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Abstract: The non-Newtonian fluid flow theory is applied to study nanofluid motion which is considered as

a new concept non-Newtonian fluid. Due to gliding motion of nano particles with respect to basic flow and ther-

mal diffusion disturbed flow caused by random motion of nano-particles, the new concept non-Newtonian fluid is

considered as a nearly basic flow, which is generalized by a slightly rotation of basic flow of one phase fluid with

respect to the 1,2,3 axes of the Cartesian coordinate system. As an important application of the developed dis-

turbed constitutive theory, the two dimensional thermal flow of nanofluid between two infinite planes is studied.

The flow between two infinite planes is treaded as a flow with dominating extension. The developed disturbed

constitutive theory can be used for the thermal nanofluid flow.

Key words : thermal nanofluid flow; new concept non-Newtonian fluid; disturbed constitutive equation;

flow with dominating extension ; computational symbolic manipulation
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INTRODUCTION

Presented investigation is a new attempt to apply non —
Newtonian fluid flow theory to study nanofluid motion which
is considered as a new concept non — Newtonian fluid""*’. In
the present paper non — Newtonian thermal nanofluid flow is
studied by disturbed constitutive approach. The disturbed
constitutive equation theory for non — Newtonian fluid flow
stability is generalized to study thermal nanofluid motion.
The attempt is presented to extend principles in research on

" 1o study

non — Newtonian fluid flow and rheology "’
nanofluid motion. In research on energy transfer theory of
nanofluid two main approaches were reported"’ ; one phase
fluid approach and perturbation model for nanofluid. As first
approximation the nanofluid can be considered as one phase

fluid of uniform mixing. The one phase approach has been
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well used now by few authors for investigation on nanofluid
heat transfer'®”’. Under assumptions that there exit no slip
motion between the basic fluid and the dispersed fine parti-
cles, also thermal equilibrium between nanoparticles and the
fluid is not important, the nanofluid can be treaded as one
phase fluid. In general case Brownian force, friction force
between fluid and particles, Brownian diffusion, sedimenta-
tion, dispersion may coexist in the basic flow of nanofluid. A
gliding velocity between fluid and particles may not be zero.
Due to the gliding motion of nanoparticles with respect to
basic fluid and thermal diffusion the disturbances in velocity
and temperature are caused by random motion of nanoparti-
cles. Otherwise the suspended solid particles increase the
thermal conductivity of the two phase mixture. Perturbation
approach for nanofluid is developed on the base of one phase

fluid with correction due small disturbance of nano — parti-
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cles in nanofluid™'’.

In non — Newtonian fluid investigation a concept of
nearly extensional flow was proposed by Huilgol'"'. Han
and Becker have extended the concept to study disturbed
constitutive theory and stability of the fluid flow'*>"*"",
According to disturbed constitutive theory of Han and Bec-
ker the disturbed extensional flow can be considered as a
nearly extensional flow, or nearly basic flow, which is gen-
eralized by a slightly rotation of basic flow with respect to
the 1,2,3 axes of the Cartesian coordinate system. The the-
oretical approach will be now extended to study nanofluid
motion. A new concept of nearly basic nanofluid flow is
introduced and an original approach - disturbed constitu-
tive approach is developed to study the nanofluid flow. A
disturbed flow caused by random motion of nano - particles
can be considered as nearly basic flow or nearly one phase
fluid flow, which is generalized by a slightly rotation of bas-
ic flow of one phase fluid with respect to the 1,2,3 axes of
the Cartesian coordinate system. An important application of
the developed disturbed constitutive theory two dimensional
thermal flow between two infinite planes will be studied.
Following the investigation of Zahorski’™?''  the flow
between two infinite planes will be considered as a flow with
dominating extension, the developed disturbed constitutive
theory can be available for the two dimensional nanofluid

thermal flow.

1 Disturbed Constitutive theory For Nanofluid Flow

In research on suspension theory Betchelor has devel-
oped an ensemble average approach to study the stress sys-
tem in a suspension of force free particles, Based on the
theory for the viscosity of dilute suspension of rigid spheres a

constitutive equation can be viewed as a single phase
5
S = muAma =1+ 56) (1

wher ¢ — volume fraction of solid particles in nanofluid.
The improved Einstein model is given as

. 1+0.5¢
T - ¢

where: 7, — effective viscosity of two phase fluid,

7, — apparent viscosity of fluid. This is the Einstein result
for the viscosity of a suspension of dilute rigid spheres.
Brinkman model is used in research on nanofluid

[69]

flow """, which is given as

_ s
Ny = (1 _d))z.s (2)

On the basis of above results the non — Newtonian sim-
ple fluid in sense of Noll and Coleman is generalized for
nanofluid, the constitutive equation of which is given as

IT = ¢($)S,S = ST,0C, (x,t,s)] (3)
where [T - generalized stress tensor for simple nanofluid, S
— stress tensor for basic simple fluid, ¥(¢) - nano — con-
stitutive function.

A series of experimental results showed''’ that the vis-
cosity and thermal conductivity of nanofluid are mainly func-
tions of volume fraction of solid particles ¢ in it, meanwhile
for the viscosity of a dilute suspension of rigid spheres the
Einstein, improved and Brickman functions are used for one
phase fluid model on the basis of which a nano — constitutive
function /() is introduced in constitutive equation (3) to
characterize the special property of two phase nature of
nanofluid ;

y(p) — 1, whenp —0

The nano-constitutive function () is more complex
one which depends not only mainly on volume fraction of
solid particles ¢, but also on particle s diameter, shape,
temperature and so on. The present paper is limited to study
influence of the main factor — volume fraction of solid parti-
cles .

The equation (3 ) is generalized simple fluid for
nanofluid. For a sufficiently small disturbance , the disturb-
ance stress is a linear functional of the disturbance part of
the right Cauchy strain tensor. Hence, the functional in

(3) has an integral representation

S,if(x’t) =¢(¢)ngkl(kl’k25k3’3)c/k](x’tas)ds (4)

where k| |k, .k; — kinematic parameters of flow. The con-
cept of short memory is generalized for the magnetic nanoflu-
id too, this means that the kemel functions in above integral
expansion are of Maxwell character, the first term of right

Cauchy tensor can be expressed by

-1 1
C'y == As A" +0(Ng) =~-sA", (5)
where s = s/A,. By inserting (5) into (4) one obtains
) 1 )
Sij(x’z) = ?WUHAM (6)
where
Wiy == 2|sRy, (k) ky ks ys)ds (7)
0
The disturbed constitutive equation (6 ) can be
reduced to
2 /,‘ = kjaa/s (8)
where
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rA T rS' T studied
A’y Sy ky +k, +k, #0
/ A, S, For basic flow the first Rivlin — Ericksen tensor and the
@ = A/lz ’ z - S/12 stress tensor are given by
na s, 2k, 0 0
L7, ] g, A={0 2 O
The disturbed constitutive equation theory will be -0 0 2k
developed to study nanofluid motion. Due to gliding motion Sy 0 0
of nano particles with respect to basic flow and thermal dif- S=10 S, O (13)
fusion a disturbed flow caused by random motion of nano — L0 0 S

particles is considered as a nearly basic flow, which is gen-
eralized by a slightly rotation of basic flow of one phase fluid
with respect to the 1,2,3 axes of the Cartesian coordinate

system. The rotation matrix is denoted by §Q

0 da;, ba,
80 =| -6a, 0 day 9)
éa, ba; O

where the da,, da,, Sa; are small rotation angles. The
nearly basic flow can be considered a small disturbance of
the basic flow.

For the perturbation nanofluid fluid the disturbed Riv-
lin Ericksen tensor and extra stress tensor are assumed to be
of

Ay = A (et ky k)

Sy = 8" (x,t,ky by ) (10)

The disturbance flow is created by the following two
factors :

(1) Slightly rotation of basic flow of one phase
nanofluid with respect to the 1,2,3 axes of the Cartesian
coordinate system;

(2) Variation in kinematic parameters k,, k,, k, of
nanofluid flow .

The disturbance Rivlin Ericksen tensor and extra stress

tensor are determined by following equations :

A = GTBk ak 6k +78k + 6QA - A5Q
p_ 08 as aS
S —akﬁk akék + kSk +68QS - S8Q (11)
The extensional flow of nanofluid is studied, velocity
field of which is given as
v, = kx, 0, = kay v, = kg (12)

where k,, k,, k, are constant elongation rates in 1,2,3
axes. When the incompressible fluid is considered the rela-
tionship of incompressibility is satisfied. But for more gener-
al case the condition of incompressibility does not satisfy,

the nano — fluid should be compressible one which will be

The disturbance Rivlin Ericksen tensor and extra stress
tensor are determined by equation (11 ). Inserting the
obtained expressions into equation (8) and taking account
of the fact that the 6k,, 6k,, 8k;, da,, 6k,, Ok,, can be
varied independently, a sufficient number of linear eqns.
are obtained which uniquely determine the 36 coefficients &,
in equation (8). The result is given.

For the simple incompressible nano — fluid the dis-
turbed stress tensor is reduced to

8k, ,6k, ,6k; ,8a, ,0a, ,6; can be varied

= y($) ( 6”20'22 3‘220/33)
w(qb)(aﬂn a%D/B)
o
e = (glfjbj 0"
o= p(d)o, D'
B (2k, + k) "

! - Mr
7'23—_(k2_k3)D23 (14)

As an application of the developed disturbed constitu-
tive equation the motion of a stretching sheet of nanofluid

will be considered.

2 Thermal flow of nanofluid

An important application of the developed disturbed
constitutive theory the Poiseuille thermal flow will be stud-
ied. The thermal nanofluid flow is a flow between two infi-
nite planes with distance of 2h. Following the investigation

of Zahorski,

considered as an evolution of some stretching motion, 1. e.

the flow between two infinite planes will be
as a flow with dominating extension, thereby the above
developed disturbed constitutive theory can be available for
the two dimensional thermal flow. The velocity field is giv-
en. Neglecting inertia in governing equations and taking

account of the velocity field the motion equation and energy
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equation are simplified.

For the nanofluid the Maxwell fluid can be considered
as a carrier liquid, the total velocity of the nanofluid is split
into two parts; basic Maxwell fluid and nano — disturbed
flow. For upper — convected Maxwell fluid the disturbance
stress component is given by the disturbed constitutive theo-

ry. The following dimensionless variables are introduced

Myt

T R

=Y s _ 2
-n—h,f—h

A

[
(Ap/LYh (Vo) /h

- T __h
'z - - I‘Z
! (Ap/L)h 77"fV0 ’
T-T
F=w="1T-= " ko= Ak 15
w VO, Tw _ Tms i Au/ i ( )
Pr = CNy
a,,
%
Br — 7]4/ m
(T, - Tw)anf
hV
Re = 22» (16)
N

where T, — average temperature of nanofluid flow, T, — wall
temperature at the boundary. For steady process the energy
equation is finally reduced to

2Br %

p T 27
W2yl 2 9T

e\ ") 9 T PrRe g’ | PrRe of
{aaio+ [] @k + k) (1 -2k) (1 —2k3)]al} )
5 llf(<15)(k3 _kl) a§

(17)
The improved Kantorovich variational approach is used
to solve equation (17). A series of shape functions is pro-

posed which is given as

(=", 1 =y (18)
The following operator is defined
PrRe 9Py T _ 9T :

L(T) = —(n* - 1D -— +AB
(T ) Py n Py 6772 obrn

apo [P,
A = —{70
A r: +
[]_(2k2+k3)(1i2k|2(1—2k3) ‘LP} (19)

k/f(@b)(kz _kl) 65

The approximate solution is assumed to be of

T&m) = (=) (&) + (1 =7 )m'd,(£) (20)
Using the improved Kantorovich approach[4 -5 7] the fol-
lowing integral relationship is satisfied

LTy (1 =9y * " dndp,dg = 0

k=12 (21)

The expression of the temperature of 2nd approximation will

be following

Tz(f"’]) =
A,Br Do
21" jBI)UXp[(ﬁ/%))‘@”
4 B, AyBr
(T=m) -4 8 12P
(e el =n'om (22)

In general case the average temperature T, is calculated by a
special form which is a constant for definite &
A,Br D
Nu == — e[ (D2 gl 23)
3 PIPRe” 02 €
When the £ is enough great the temperature field is fully de-

veloped T,. The average temperature can be considered as a
constant with respect to £&. The Nusselt number can be sim-

plified as following

A,Br
Nu = —— (24)
3
F(t) —=—
—>F(t)
Figure 1 flow between two infinite planes
Basic flow
Velocity distribution
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Figure 2 Disturbed velocity distribution of Maxwell fluid
1 — Basic Maxwell fluid flow;
k, =-0.5,k =0.3,k =0.2,dp,/d¢ =1

Results and Conclusions

As an important application of the developed disturbed
constitutive theory the two dimensional thermal nanofluid
flow between two infinite planes is investigated. The flow
between two infinite planes is simulated as a flow with domi-

nating extension, the disturbed constitutive theory has been
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Figure 3 Temperature field of second approximation
T(&,7n) for heat transfer theory

20
= 1x10° -
=, N Nu=ABr/3
@
_2
510
3
@ Re =6x10°
3
=
x10°
0

0 1000

Dimensionless distance ét

2000

Figure 4 Change of Nusselt number Nu with
dimensionless distance ¢ for second approximation of
heat transfer theory
Br = 100,A, = 0.4,Pr = 1.0,A, = 2.51713091

1.5
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0.2 0.4

¢ volume fraction of solid particles

Figure 5 Change of Nusselt number Nu with volume
fraction of solid particlesfor nanofluid heat transfer of
second approximation Einstein model
k, =-0.5k = 0.3,k =0.2,dp,/dé = 1
utilized for the thermal nanofluid flow. Using the improved
variational Kantorovich method and the computer software
Maple 16 artificial analytical solution of the thermal nanoflu-

id flow is obtained.
Base on the disturbed constitutive theory and using the
improved Kantorovich variational approach the results of

nanofluid thermal flow between two infinite planes are shown

1.5

1.0

Nusselt Number Nu

0 9.2 0.4

¢ volume fraction of solid particles

Figure 6 Change of Nusselt number Nu with volume
fraction of solid particles for nanofluid heat transfer of
second approximation Improved Einstein model
ko= —0.5k = 0.3,k = 0.2,dp,/dé = 1
by Figs. Figure 4 shows change of Nusselt number Nu with
dimensionless distance ¢ for second approximation. The
changes of Nusselt number Nu with volume fraction of solid
particles for nanofluid flow are shown by Figs. 5 to 6 for
nano — constitutive functions ; Einstein model, and improved
Einstein model respectively. As the experiments showed that
the tendency of function ¥(¢) is in agreement with the one
phase fluid functions thereby in calculation one phase fluid
models such as the Einstein , improved Einstein functions
were used. It can be seen from the Figures , that The chan-
ges of Nusselt number Nu increase with the volume fraction
of solid particles for nanofluid flow, it means that the sus-
pended fine particles considerably increase the thermal con-
ductivity of the mixture and improve the thermal capability
of energy exchange equipment. The New concept non —
Newtonian fluid theory, i. e. the disturbed constitutive
equation theory has been successfully extended to study

thermal nanofluid motion.
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