文章编号:1673-1549(2014)01-0092-02

DOI:10.11863/j. suse. 2014.01.23

非 Armendariz 环的最小阶

何建伟, 邵海琴, 郭莉琴, 王力梅

(天水师范学院数学与统计学院, 甘肃 天水 741001)

摘 要:利用有限环的同构分类,以及两个判断 Armendariz 环的充分条件,讨论了非 Armendariz 环的最小阶数,最后得出,交换的非 Armendariz 环的阶数最小为 4,非交换的非 Armendariz 环的阶数最小为 8,并给出了这些最小阶数对应环的构造。

关键词:有限环;非 Armendariz 环;最小阶

中图分类号:0153.3

本文所指的环都是结合环但不一定含有单位元,称 环 R 是 Armendariz 环,如果对 R[x] 中任意两个多项式

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

 $g(x) = b_0 + b_1 x + \dots + b_m x^m$

若 f(x)g(x)=0,则对任意整数 $0 \le i \le n$, $0 \le j \le m$,有 $a_ib_j=0$,对 Armendariz 环的讨论始于文献 [1-2],在文献 [3-6] 中分别讨论了弱 Armendariz 环,称环 R 是弱 Armendariz 环,如果对 R[x] 中任意两个线性多项式 $f(x)=a_0+a_1x$, $g(x)=b_0+b_1x$,若 f(x)g(x)=0,则 对任意整数 $0 \le i \le 2$,0 $\le j \le 2$,有 $a_ib_j=0$ 。文献 [7]中得到了两类不一定是 reduced 环的 Armendariz 环。

1 主要结果

一个环R关于乘法构成一个含零元的半群,下面的命题是显然的。

命题 1 若 $R^2 = 0$, 则环 R 是 Armendariz 环, 称环 R 是 reduced 环, 如果 R 不含非零幂零元, Armendariz 注意 到 reduced 环一定是 Armendariz 环。

命题2 若环R是 reduced 环,则R是 Armendariz 环。 命题3 若环R的一个非空子集A满足:

- $(1) A^2 = 0$
- (2) 对 R 中任意两元素 x, y, 若 xy = 0 则 $x \in A$ 或 $y \in A$ 且当 $x \in A$ 时, xR = 0, 当 $y \in A$ 时, Ry = 0, 则 R 为 Armendariz 环^[7]。

文献标志码:A

命题 4 若环 R 的一个非零理想 I 满足:

- $(1) I^2 = 0$
- (2) 对 R 中任意非零元素 x_1, x_2, x_3, x_4 ,若 $x_1x_2 = 0$, $x_1x_4 + x_3x_2 = 0$, $x_3x_4 \in I$,则 $x_1, x_2, x_3, x_4 \in I$,则 R 是 Armendariz环[7]。

对于最小阶的非 Armendariz 环, 首先, 阶为素数的 环或者是零乘环或者是 reduced 环, 所以也是 Armendariz 环。阶为 1 的环显然也是 Armendariz 环, 故讨论四阶环 的 Armendariz 性。

由文献[8]知,不同构的四阶环只有 11 类,沿用文献[8]的符号将这 11 类环表示为 R_i , $i=1,2,\cdots,11$. 分别讨论其 Armendariz 性。

命题 5 R_1 是 Armendariz 环。

证明 $I = \{0,b\}$ 是 R_1 的理想满足 $I^2 = 0$,若 R 中任意非零元素 x_1, x_2, x_3, x_4 ,满足 $x_1x_2 = 0$, $x_1x_4 + x_3x_2 = 0$, $x_3x_4 \in I$,如果 $x_3x_4 = 0$,则 $x_1 = x_2 = x_3 = x_4 = b \in I$;如果 $x_3x_4 = b$,因为 $b(x_4 + x_3) = 0$ 所以 $x_4 + x_3 = 0$ 或 $x_4 + x_3 = b$ 但 $x_4 + x_3 = 0$ 将推出 $x_4 = x_3$,这与 $x_3x_4 = b$ 矛盾,故只能是 $x_4 + x_3 = b$,但 $x_4 + x_5 = b$,因为 $x_5 = x_5$,我与 x_5

 R_2 是 reduced 环故也是 Armendariz 环。 R_3 是零乘环 故也是 Armendariz 环。

命题 6 R₄ 是 Armendariz 环。

收稿日期:2013-08-01

基金项目: 天水师范学院中青年教师科研资助项目(4012012010005)

作者简介:何建伟(1983-),男,甘肃天水人,讲师,硕士,主要从事环论方面的研究,(E-mail)he_jw@163.com

证明 $A = \{0, a\}$ 是环R的一个非空子集满足 $A^2 = 0$,若 xy = 0则 $x \in A$ 或 $y \in A$ 且当 $x \in A$ 时,不论 x = 0 还是 x = a 都有 xR = 0,同样如果 $y \in A$,那么 Ry = 0,由命题 3 知 R_4 是 Armendariz 环。

同理可证明 R_5 , R_6 , R_7 也是满足命题 3 的 Armendariz 环, R_8 是无零因子环, 故是 reduced 环, 所以是 Armendariz 环, R_9 是零乘环, 故是 Armendariz 环, R_{10} 与模 4 剩余类环同构, 在文献 [7] 中已经证明模 4 剩余类环为 Armendariz 环。

命题 7 R_{11} 是弱 Armendariz 环但不是 Armendariz 环。证明 R_{11} 的加法表和乘法表分别见表 1 和表 2。则有 R_{11} 中的多项式乘积等式 $(a+(3a)x+(2a)x^2)(2a+(3a)x+ax^2)=0$,但 $a(3a)=2a\neq 0$,故 R_{11} 不是 Armendariz 环,但是对 R_{11} 中任意两个线性多项式 $f(x)=a_0+a_1x$, $g(x)=b_0+b_1x$,若 f(x)g(x)=0,不妨假设 a_0 , a_1 , b_0 , b_1 都是非零元,则 a_0 , a_1 , b_0 , b_1 ∈ $\{a,2a\}$,若 $a_0=2a$,则 $f(x)g(x)=(a_1x)(b_0+b_1x)=0$,所以对任意整数 $0 \leq i \leq 2$, $0 \leq j \leq 2$,有 $a_ib_j=0$,这说明 R_{11} 是一个弱 Armendariz 环。

	ā.	長1 加法表		
+	0	a	2a	3a
0	0	a	2a	3 <i>a</i>
a	a	2a	3a	0
2a	2a	3a	0	a
3 <i>a</i>	3a	0	a	2a

表 2 乘法表						
0	0	a	2a	3a		
0	0	0	0	0		
a	0	2a	0	2a		
2a	0	0	0	2a		
3 <i>a</i>	0	2a	2a	2a		

综合以上七个命题,有:

定理 1 交换的非 Armendariz 环最小阶为 4, 在同构的意义下只有一类。

对于交换的非 Armendariz 环的最小阶数,只需从六

阶以上的环中去寻找。由文献[8],六阶环在同构意义下只有四种,用文献[8]记号表示为 R_1 , R_2 , R_3 , R_6 , 其中 R_1 是 reduced 环,所以也是 Armendariz 环。 R_2 中取非空子集 $\{\bar{0},\bar{6}\}$, R_3 中取非空子集 $\{\bar{0},\bar{6},\bar{12}\}$, 可证明其是满足命题 1 的 Armendariz 环。 R_6 是零乘环,故也是 Armendariz 环,在八阶环中,考虑模 2 剩余类环 Z_2 的 2 阶上三角矩阵环 $T_2(Z_2)$,由文献[7]知其不是 Armendariz 环,这个环是非交换的。

定理2 非交换的非 Armendariz 环最小为 8 阶。

2 结束语

综上讨论,交换的非 Armendariz 环的阶数最小为 4, 非交换的非 Armendariz 环的阶数最小为 8,对于其它环, 也可以考虑用同构分类的方法做类似地讨论。

参考文献:

- [1] Armendariz E P.A note on extensions of Baer and p. p.-rings[J].J.Austral.Math Soc,1974,18:470-473.
- [2] Rege M B,Chhawchharia S.Armendariz rings[J].Proc. Japan Acad.Ser.A Math.Sci,1997,73:14-17.
- [3] Lee T K, Wong T L.On Armendariz rings [J]. Houston J.Math, 2003, 29:583-593.
- [4] 伍惠凤.关于弱 3-Armendariz 环[J].杭州师范大学学报:自然科学版,2012(3):241-244.
- [5] 解晓娟.弱 M-拟 Armendariz 环[J].安徽师范大学学报:自然科学版,2012(2):123-126.
- [6] 解晓娟.中心弱 Armendariz 环[J].郑州大学学报:理学版,2012(2):10-12.
- [7] Jian W H, Sheng Z R. The power-serieswise Armendariz rings with nilpotent subsets [J]. Scientia Magna, 2010,6(4):107-112.
- [8] 张学哲.四元环的同构分类[J].山西师范大学学报: 自然科学版,2002,16(4):1-6.
- [9] 杨子胥.近世代数[M].北京:高等教育出版社,2003.

The Least Order of Non-Armendariz Ring

HE Jianwei, SHAO Haiqin, GUO Liqin, WANG Limei

(School of Mathematics and Statistic, Tianshui Normal University, Tianshui 741001, China)

Abstract: According to the isomorphism classification of finite ring, and two sufficient conditions for deciding Armendariz ring, the least order of non-Armendariz ring is studied. Then it can be concluded that the least order of non-Armendariz ring is eight when the ring is commutative. Finally, the structures of these rings that have the least orders are presented.

Key words: finite rings; non-Armendariz ring; the least order