文章编号:1673-1549(2013)06-0074-03

DOI:10.3969/j.issn.1673-1549.2013.06.016

电子与第二周期原子碰撞的规律研究

方 敏, 包兴明

(四川理工学院理学院,四川 自贡 643000)

摘 要:首先采用处理慢电子被原子散射的等效势模型,用分波法计算了能量在0.1 eV~15 eV 范 围内电子与氮原子系统的弹性散射总截面;其次讨论了 Hammerling 交换势中比例系数γ取不同数值时 对结果的影响;最后总结了低能电子与第二周期元素原子碰撞时交换势中比例系数γ的取值规律。

关键词:侵电子;第二周期原子;弹性碰撞 中图分类号:0562

引言

原子分子物理学主要研究的是原子的结构、性质、 相互作用和运动规律,微观粒子间的碰撞是其重要的研 究方向之一,而负电子与原子的弹性碰撞又是其中重要 的研究内容,因其可以为其它方面的研究提供大量的参 考信息,所以它的研究成果已广泛应用于大气物理、凝 聚态物理、激光化学、航天科技、同位素分析等诸多领 域,对这些学科的发展产生了直接而深远的影响。

电子原子碰撞研究中一个重要方面是使用某一物 理模型,寻找精确可靠的理论计算方法,以便获得形势 简单、应用方便且具有足够精度的波函数,由此计算出 描述原子性质的一些重要的物理量,比如跃迁振子强 度、能级寿命、极化率、碰撞截面等。在理论计算中,微 观粒子间的相互作用势又极为重要,因为按照量子力学 的观点,如果体系的哈密顿算符已知,则问题转化为解 薛定谔方程。众所周知,哈密顿算符由动量算符和相互 作用势算符组成,实际上许多研究工作都是围绕认识相 互作用势的性质而进行的。获得相互作用势信息的途 径主要有:束缚态的研究和散射的研究。有些体系不能 形成稳定的束缚态,要从散射数据获得相互作用势的信 息比较传统,广泛使用的方法是根据一些普遍的原理或

文献标志码:A

者物理上的直觉,假定势具有某种已知的函数形式,其 中包含若干个可调参数,然后从假定出发,计算出散射 截面,当然,计算结果与参数的选择有关。

等效势模型是处理慢电子与原子弹性碰撞最简明 和有效的模型,而该模型中的交换势采用经 Hammerling 处理过的 Slater 的自由电子气模型,为了研究这一模型里 交换势中比例系数γ的取值规律,文献[1-4]利用这一模 型计算了电子 – 氧原子、电子 – 氖原子、电子 – 锂原子和 电子 – 碳原子系统的一些散射数据。本文再次使用这一 模型计算了电子 – 氮原子系统的散射总截面,并把结果与 Ronald J. W. H^[5],Blaha M^[6]等的理论值和 R. H. Neynaber 等的实验值进行了对比,得出了对这一系统而言γ应取的 最为合理的值。

根据研究结果,慢电子与第二周期原子碰撞时,γ的 取值大小有一定规律,这反过来也再次说明了使用等效 势模型和交换势处理慢电子和原子的碰撞是极为有效 的。

1 物理模型与计算方法

入射电子与靶原子碰撞时的势能函数 V(r) 包括^[78]:入射电子与靶原子相互作用的静势 $V_o(r)$,极化势 $V_o(r)$ 和交换势 $V_e(r)$ 。即

收稿日期:2013-05-13

基金项目:国家自然科学基金项目(10574096);高等学校博士点专项科研基金资助项目(20050610010)

作者简介:方 敏(1963-), 女, 四川德阳人, 副教授, 主要从事理论物理和原子分子碰撞方面的研究, (E-mail) fangmin631114@163. com

第26卷第6期

 $V(r) = V_{0}(r) + V_{p}(r) + V_{e}(r)$ (1)

1.1 静势 V₀(r)

一个电子在原子势场中运动时的静势可用(2)式计算。

$$V_o(r) = -\frac{Z}{r} + \sum_{i=1}^{Z} \int \frac{|\psi_i(r_i)|^2}{|r - r_i|} d\tau_i$$
(2)

式(2)中:*Z*是靶原子的原子序数, $\psi_i(r_i)$ 是原子中第*i* 个电子的波函数,*r*是入射电子到原子核的距离, $|r - r_i|$ 是入射电子到原子中第*i*个电子的距离。

将文献[8]中的解析波函数代入(2)式,得

$$\begin{split} V_{o}(r) &= -\left(S_{1} + S_{2}N^{2}/3a^{3}M_{2}\right)\left(\frac{1}{r} + \mu a\right)e^{-2\mu a r} - \\ \left(P_{2} + S_{2}/M_{2}\right)\left(\frac{1}{r} + \frac{3}{2}\mu + \mu^{2}r + \frac{1}{3}\mu^{3}r^{2}\right)e^{-2\mu r} + \\ \frac{16S_{2}N}{(1+a)^{4}M_{2}}\left[\frac{1}{r} + \frac{2}{3}(1+a)\mu + \\ \frac{1}{6}(1+a)^{2}\mu^{2}r\right]e^{-(1+a)\mu r} \end{split}$$
(3)

式(3)中: S_1 , S_2 和 P_2 分别为 1s, 2s和 2p 电子的数目; M_2 , N, μ , a均由文献[8]给出。

1.2 极化势 V_p(r)

入射电子经历原子附近所用时间较长,使靶原子的 电子云发生形变,极化了靶原子,用下式计算靶原子氮 因入射电子诱导而产生的极化势:

$$V_{p}(r) = -\frac{1}{2} \sum_{nl} \frac{\alpha_{nl}}{(\vec{r}_{nl}^{2} + r^{2})^{2}}$$
(4)

式(4)中的 α_{nl} 表示nl电子壳层的极化系数, \bar{r}_{nl} 是相应的电子轨道的平均半径。对氮原子,有

$$V_{p}(r) = -\frac{1}{2} \left[\frac{\alpha_{1s}}{(\vec{r}_{1s}^{2} + r^{2})^{2}} + \frac{\alpha_{2s}}{(\vec{r}_{2s}^{2} + r^{2})^{2}} + \frac{\alpha_{2p}}{(\vec{r}_{2p}^{2} + r^{2})} \right]$$
(5)

$$\bar{r} = \int \psi^* r \psi d\tau \tag{6}$$

将解析波函数代入(6)式得:

$$\begin{cases} \bar{r}_{1s} = \frac{3}{2} \cdot \frac{1}{\mu a} \\ \\ \bar{r}_{2s} = \frac{\left[\frac{5}{2} + \frac{N^2}{2a^4} - \frac{64N}{(1+a)^5}\right]}{\mu \cdot M_2} \\ \\ \bar{r}_{2p} = \frac{5}{2} \cdot \frac{1}{\mu} \end{cases}$$
(7)

式(7)中 $M_2 = 1 - 16/(1 + a)^4 + N^2/3a^2_{\circ}$

因内层极化很小,不考虑内层极化,即 $\alpha_{1s} = 0$ 。由于 $\bar{r}_{2s} 与 \bar{r}_{2p}$ 基本相等,用它们的平均值代替,即 $\bar{r}_{2} = \frac{1}{2}$ $(\bar{r}_{2s} + \bar{r}_{2p}) \cdot \alpha_{2} = \alpha_{2s} + \alpha_{2p}$,则式(5)变为:

$$V_{p}(r) = -\frac{1}{2} \left[\frac{\alpha_{2}}{(\vec{r}_{2}^{2} + r^{2})^{2}} \right]$$
(8)

式(8)中, α_2 代表外壳层的极化系数, 且 $\alpha_2 = 7.42(a. u)^{[7]}$ 。

1.3 交换势 V_e(r)

全同粒子不可区分,当入射电子与靶原子中的电子 交换时不会改变碰撞体系的量子态,用交换势描述入射 电子与靶原子的交换作用。用(9)式计算交换势:

$$V_{e}(r) = -\gamma \cdot \left\{ 3 \left[\frac{3}{8\pi} \sum_{i=1}^{Z} \psi_{i}^{*}(r) \psi_{i}(r) \right]^{+} \right\}$$
(9)

式(9)中的γ是考虑了电子 - 原子系统的交换势比自由 电子气小而引进的比例系数。将解析波函数代入(9)式 得:

$$V_{e}(r) = -3\gamma \left(\frac{3}{4\pi}\right)^{\frac{1}{2}} \left\{ N_{1}^{2} e^{-2\mu a r} + N_{2}^{2} \left[(\mu r) e^{-\mu r} - N e^{-\mu a r} \right]^{2} + \frac{1}{6} P_{2} N_{3}^{2} (\mu r)^{2} e^{-2\mu r} \right\}^{1/3}$$
(10)

总截面用(11)式进行计算:

$$\sigma = \sum_{l} \sigma_{l} = \frac{4\pi}{k^{2}} \sum_{l} (2l+1) \sin^{2} \delta_{l}$$
(11)

式(11)中的 δ_l 是相移, k^2 是入射电子能量。相移由下 式求出:

$$\tan \delta_{l} = (-1)^{l} B_{l} / A_{l} = (-1)^{l+1} J_{l+\frac{1}{2}} (k\rho) / J_{-l-\frac{1}{2}} (k\rho)$$

2 计算结果和讨论

本文计算了入射能量在 0.1 eV ~15.0 eV 范围内的 电子与氮原子弹性碰撞的总截面,并把计算结果与一些 理论值和实验值进行了比较。图 1 是总截面随入射电子 能量变化的关系曲线,图中的 a。是第一玻尔轨道半径。

从图 1 中看出, Ronald J. W. Henry, M. Blaha 和本 文的理论值都大于 R. H. Neynaberder 的实验值,但 Ronald J. W. Henry 和 M. Blaha 的值都偏离得较多,而本文 的结果比较好。几个理论值之所以有差异,原因是使用 了不同的计算方法, Ronald J. W. Henry 等用的是 Polarized - orbital 法, M. Blaha 等用的是 Distorted - wave 近似 法,而本文使用的是分波法。本文计算中,交换势式 (10) 里的 γ 分别取了 0.11、0.12、0.13、0.14 和 0.15。 图1中的曲线说明,γ取值不同,结果有所不同。由于有 很多影响的因素, R. H. Nevnaberder 的实验值误差较大, 所以,分析曲线规律,γ取0.13时的计算结果虽然与R. H. Neynaberder 的实验值有一定的差距,但与 Ronald J. W. Henry 用 Polarized - orbital 法得到的理论值吻合得 较好。文献[4]中的结果与 Ronald J. W. Henry 用 Polarized - orbital 得到的结果也很接近,这不是偶然的,它 说明了这两种方法在处理电子与原子弹性散射时都很 有效。其实在计算电子原子碰撞截面时,已经有了多种 行之有效的方法,比如:极化轨道法、矩阵变分法、密藕 近似法……等。

3 结束语

总结文献[1-4]和本文的结果,得到慢电子与第二 周期元素原子碰撞时交换势中γ的取值情况(表1)。 计算中,交换势使用的是 Hammerling 处理过的 Slater 的 自由电子气模型。由于原子核对核外电子的束缚,电子 -原子系统中的交换势比自由电子气的小,所以 Hammerling 在 Slater 的交换势前乘一个比例系数γ。不同 的原子,由于其内部结构不同,核对电子的束缚能力也 不一样,当入射电子和不同原子碰撞时,与靶原子中电 子交换的可能性也有差异,所以γ应该取不同的值。从 表1中数据可以看出,电子与第二周期原子弹性碰撞时

表 1	碰撞交换势中 γ	的取值情况
-----	-----------------	-------

电子 – 原子系统	e - Li	$e^ C$	$e^ N$	e 0	e Ne
(的取值	0.04	0.10	0.13	0.15	0.22

交换势式中的比例系数 γ 的取值确实不同,不仅如此, 而且还有一定规律:γ 随着原子序数的增加而增大。 这说明随着核外电子数的增多及原子壳层的增加,入 射电子与靶原子中电子交换的可能性变大了。可以做 出合理的预料:电子与第三周期元素的原子做弹性碰 撞时 γ 的值应大于 0.22,而与第四周期原子碰撞时会 更大。

参考文献:

- [1] 方敏,李劲.低能电子与氧原子的弹性散射[J].四川 师范大学学报:自然科学版,2008,31(4):428-431.
- [2] 方敏.侵电子与氖原子的弹性散射研究[J].西南师 范大学学报:自然科学版,2009,34(4):19-23.
- [3] 方 敏,王 君.电子与锂原子的弹性碰撞[J].安徽大学 学报:自然科学版,2010,34(6):53-56.
- [4] 方 敏,包兴明.低能电子与碳原子的碰撞[J].西南师 范大学学报:自然科学版,2012,37(11):24-27.
- [5] Ronald J W H.Polarization in low energy electron scattering:Carbon and Nitrogen[J]. Phys. Rev., 1968, 172:99-103.
- [6] Blaha M,Davis J.Elastic scattering of electrons by oxygen and nitrogen at intermediate energies[J].Phys.Rev.A, 1975,12:2319-2324.
- [7] 杨向东.慢电子-原子碰撞研究[J].物理学进展,1984, 4(4):550-563.
- [8] 苟清泉,黄树勋.原子的解析波函数Ⅱ:第二周期元素的正常态原子与离子的解析波函数与能量积分的计算[J].物理学报,1965,21(6):1293-1302.

Study of Collision Rule of Electron and the Second Cycle Atom

FANG Min, BAO Xing-ming

(School of Science, Sichuan University of Science & Engineering, Zigong 643000, China)

Abstract: The total elastic scattering cross-section of electron and nitrogen atom was calculated by using the equivalent potential model and partial wave, which were often used to cope with the scattering process of electron and atom. The range of electron energy was 0.1 eV ~ 15 eV. Then how the result varied with the Hammerling's exchange potential coefficient γ was discussed. In addition, the dereferencing rule of coefficient γ in the collision of low-energy electron and the elements of the second cycle was summarized.

Key words: slow electron; atoms of the second cycle; elastic collision