文章编号:1673-1549(2013)04-0030-05

配位聚合物[Cu(MB)(DMF)(H₂O)₂(μ-SO₄)]_n 的合成、表征及晶体结构

张秀兰^{a,b},谢 斌^a,蔡述兰^{a,b},林 肖^c,朱莎莎^c

(四川理工学院 a.功能材料研究所; b.化学与制药工程学院; c.材料与化学工程学院,四川 自贡 643000)

摘 要:合成了配位聚合物[Cu(MB)(DMF)(H₂O)₂(μ -SO₄)]_n(MB 为苯并咪唑),采用元素分析 和紫外 - 可见光谱进行了表征,并用 X 射线衍射法测定了其晶体结构。该晶体属于斜方晶系, $P n_{21}a 空$ 间群; 晶胞参数:a = 24.2574(5)Å,b = 17.7364(5)Å,c = 7.0006(2)Å,V = 3011.94(14)Å³, $D_c = 1.706$ Mg/m³,Z = 8,F(000) = 1592, $\mu = 1.63$ mm⁻¹,S = 1.03, $(\Delta/\sigma)_{max} = 0.001$, $R_1 = 0.039$, $wR_2 = 0.0822$ [$I > 2\sigma(I)$]。晶体结构解析表明,配位聚合物[Cu(MB)(DMF)(H₂O)₂(μ -SO₄)]_n的每个结 构单元存在两个不对称的子单元,每个子单元包括1个Cu(II)原子、1个苯并咪唑、1个DMF、1个SO₄²⁻ 和2个H₂O分子;Cu(II)原子与苯并咪唑的1个N原子、DMF中的1个O原子、2个H₂O分子中的2个 O原子,1个SO₄²⁻分子中的2个O原子形成八面体六配位结构,Cu(II)原子位于八面体的中心,SO₄²⁻ 为 桥联配体,整个Cu(II)为拉长的八面体,其中O1、O5和O11、O12分别位于轴向位置。两个子单元通过 氢键作用形成二聚体。通过SO₄²⁻ 桥联两个Cu(II)和分子间氢键作用形成沿 c轴的一维结构。一维链 通过链间氢键作用,形成三维的网状结构。

关键词:苯并咪唑;配位聚合物;晶体结构 中图分类号:0641.12

配位聚合物性质独特,在配位化学与超分子化学 领域中具有潜在的应用价值^[1-3]。苯并咪唑类杂环化 合物在配位化学中占有相当重要的地位。2 – 巯基苯 并咪唑类化合物是一种含有两个氮原子和一个巯基的 杂环化合物,因而也具有杂环化合物的特性。其特殊 的结构特性、生物活性、反应活性及优良的缓蚀性能在 高性能复合材料^[45]、生物^[6-7]、医药^[89]、金属防腐^[10-11] 等诸多方面有着广泛的运用。2 – 巯基苯并咪唑作为 有机配体与金属配位,可形成具有光电功能的配合 物^[12]。S原子作为软碱,具有配位能力强和配位多样 性的特点,易与 Cu、Ag等软酸金属离子形成配位桥 键,因此含硫配体易与 Cu、Ag等金属形成各种结构的 配合物^[13]。为了揭示不同结构的含硫配体和 Cu 的反

文献标志码:A

应特点,本文采用具有 S、N 配位原子的 2 - 巯基苯并 咪唑与 Cu 作用,得到一种配位聚合物[Cu(MB) (DMF)(H₂O)₂(μ-SO₄)]_n。

- 1 实验部分
- 1.1 试剂与仪器

所有试剂均为市售分析纯级,除 CS₂ 外均未作进一步纯化处理。

XRC-1显微熔点测定仪(四川大学科学仪器厂), 温度计未校正;CARLO ERBA 1106 元素分析仪(意大利 Carlo-Erba 公司);TU-1901 双光束紫外-可见分光光 度计(北京普析公司,测试范围为900~190 cm⁻¹,溶剂 为甲醇)。

收稿日期:2013-04-20

基金项目:四川省科技厅项目(2011JY0052);四川理工学院科研项目(2009xjkPL004)

作者简介:张秀兰(1978-),女,四川简阳人,实验师,硕士,主要从事有机合成及功能材料方面的研究,(E-mail)zxlsuse@sina.com

1.2 2 - 巯基苯并咪唑的合成 (MBI)

2 - 巯基苯并咪唑参照文献[14]方法合成。在三口 烧瓶中加入邻苯二胺(2.16 g, 20 mmol)、氢氧化钠 (0.80 g, 20 mmol)、四丁基溴化铵(0.32 g, 1 mmol)以 及100 mL 水/乙醇(4:1)的混合溶液,在35 ℃下,30 min 内滴加二硫化碳(1.52 g, 20 mmol),升温到40 ℃继续 反应至无硫化氢放出,用醋酸酸化至中性,有大量固体 析出,减压过滤,滤饼用95%乙醇重结晶,活性炭脱色, 真空干燥得白色固体2.53 g,产率84.3%,熔点300 ~ 301 ℃。元素分析 $C_7H_6N_2S$:实验值(理论值)%:C 55.82 (55.97),H 4.38 (4.03),N 18.98 (18.65),S 21.41 (21.35)。

1.3 配位聚合物[Cu(MB)(DMF)(H₂O)₂(μ-SO₄)]_n的合成

苯并咪唑 - 2 - 硫醇钠 (0.35 g, 2.0 mmol)溶于 40 mL 甲醇中,搅拌下加入 CuCl₂ · 2H₂O(0.34 g, 2.0 mmol),立即有砖红色固体析出,在40℃下继续搅 拌反应3h,减压过滤,滤饼经甲醇洗涤,真空干燥得砖 红色固体0.35 g,产率83%。

取 0.2 g 砖红色固体溶于 10 mL DMF 中, 过滤, 滤 液倒入洁净的比色管中, 室温放置 3 个月后, 析出深绿 色块状晶体。元素分析 C₁₀ H₁₇ CuN₃O₇S: 实验值(理论 值) / %: C31.14 (31.05), H4.47 (4.43), N10.93 (10.86), S8.21 (8.29)。UV – vis(CH₃OH), λ /nm: 217, 304。

1.4 晶体结构测定

选取大小为 0. 25 mm × 0. 20 mm × 0. 10 mm 的绿色 块状晶体 1,在 Oxford Diffraction Xcalibur Eos 单晶衍射 仪上使用经过石墨单色器 *Mo* Ka 射线($\lambda = 0.071$ 070 nm)为辐射源,在 2.91° < θ < 26.37°范围内,采用 ω 扫描方式,在 150.2 K下,收集 8712 个衍射点,其中 5282 个为独立衍射点数($R_{int} = 0.0244$),其中用于最小 二乘法修正的衍射数为4487 个($I > 2\sigma(I)$),所有衍射 数据进行了 LP 校正和衰减校正。收集的数据用 CrysAlis PRORED 进行还原,通过 CrysAlis PRO RED 进行 multi – scan 经验吸收校正。晶体结构采用直接法以 SHELXTL 程序直接法解出,以差值傅立叶合成法定出非 氢原子坐标,并以各向异性热参数用全矩阵最小二乘法 对其进行修正。氢原子坐标由理论方法获得,并参与结 构因子 计算。最终偏离因子 R = 0.039, $wR_2 =$ 0.0822(5282) [$I > 2\sigma(I)$],在最终差值 Fourier 图中, 最高电子密度峰0.0329 $e \cdot \mathring{A}^{-3}$,最低电子密度峰 – 0.447 $e \cdot \mathring{A}^{-3}$ 。

标题 配 位 聚 合 物 的 晶 体 学 数 据 如 下: $C_{10} H_{17}$ CuN₃O₇S,斜方 晶 系, *P* $n_{21} a$ 空 间 群; 晶 胞 参 数: a = 24.2574(5) Å, b = 17.7364(5) Å, c = 7.0006(2) Å, *V* = 3011.94(14) Å³, $D_c = 1.706 Mg/m^3$, *Z* = 8, *F*(000) = 1592, $\mu = 1.63 \text{ mm}^{-1}$, *S* = 1.03, $(\Delta/\sigma)_{max} = 0.001_{\circ}$

2 结果与讨论

2.1 合成部分

配位聚合物在培养单晶过程中发现,溶液缓慢地由砖红色变为深绿色,最终得到绿色晶体,结合测得的晶体结构可以推断出,该过程中配体 MBI 的巯基被氧化,巯基在溶液中放置易被氧化成 SO4²⁻,SO4²⁻参与和 Cu (II)的配位而得到去巯基的配合物。

2.2 结构描述

配位聚合物[Cu(MB)(DMF)(H₂O)₂(μ-SO₄)]_n 的部分键长、键角数据见表 1,氢键作用见表 2,分子结 构如图 1 所示,结构单元内氢键相互作用如图 2 所示, 分子之间相互作用构成的一维结构如图 3 所示,分子三 维堆积图如图 4 所示。

表1 配合物的主要键长(nm)和键角(°)

Cu1—01	2.002(4)	08—Cu2—011	97.52 (12)
Cu1—02	1.964(3)	09—Cu2—08	87.33(15)
Cu1—03	1.993(4)	09—Cu2—010	91.13(14)
Cu1—N1	1.994(4)	09—Cu2—011	86.19(11)
Cu2—08	1.995(4)	010—Cu2—08	168.29(14)
Cu2—09	1.978(3)	010—Cu2—011	93.96(12)
Cu2—010	1.987(4)	C1—N1—Cu1	122.0(4)
Cu2-011	2.414(3)	N1—Cu1—O1	89.44(17)
Cu2—N4	1.961(4)	N4—Cu2—O8	89.34(18)
S1—04	1.466(3)	N4—Cu2—O9	172.86(15)
S1—05	1.484(3)	N4—Cu2—O10	93.40(17)
S2-011	1.480(3)	N4—Cu2—O11	87.99(12)
S2-011-Cu2	133.18(17)	C7—N1—Cu1	132.5(3)
02—Cu1—O3	90.51(14)	C8—O1—Cu1	118.5(3)
02—Cu1—N1	174.51(15)	C11—N4—Cu2	125.6(4)
03—Cu1—01	174.07(15)	C17—N4—Cu2	130.3(3)
03—Cu1—N1	92.83(16)	C18—O8—Cu2	116.3(3)

由图 1 可知, 配位聚合物 [Cu (MB) (DMF) (H₂O)₂ (μ -SO₄)]_a 的每个结构单元存在两个不对称的 子单元,每个子单元包括 1 个 Cu (II) 原子、1 个苯并咪 唑、1 个 DMF、1 个 SO₄²⁻和 2 个 H₂O 分子; Cu (II) 原子 与苯并咪唑的 1 个 N 原子、DMF 中的 1 个 O 原子、2 个 SO₄²⁻ 分子中的 2 个 O 原子、2 个 H₂O 分子中的 2 个 O 原子,形成八面体六配位结构, Cu (II) 位于八面体的中心,

表2 配合物中的氢键(Å,°)						
D—H····A	D—H	Н…А	D····A	D—H…A		
02—H2A····S2 ⁱ	0.822(18)	2.84(2)	3.626(4)	161(4)		
02—H2A····013 ⁱ	0.822(18)	1.831(19)	2.628(4)	163(4)		
02—H2B····S1 ⁱ	0.861(18)	2.69(3)	3.417(3)	142(3)		
O2—H2B····O5 ⁱ	0.861(18)	2.62(3)	3.033(4)	111(3)		
O2—H2B····O7 ⁱ	0.861(18)	1.78(2)	2.633(5)	172(5)		
03—H3A····014 ⁱ	0.804(18)	1.95(3)	2.696(4)	155(4)		
03—H3B…S1	0.854(18)	2.79(3)	3.449(4)	135(3)		
03—H3B…06	0.854(18)	1.79(2)	2.616(4)	162(4)		
09—H9A…S2	0.864(18)	2.71(3)	3.415(3)	139(3)		
09—H9A…014	0.864(18)	1.78(2)	2.633(5)	170(4)		
09—H9B…S1	0.811(18)	2.94(3)	3.661(3)	150(4)		
09—H9B…06	0.811(18)	1.840(19)	2.643(4)	170(4)		
$010H10AS2^{i}$	0.868(18)	2.74(3)	3.457(4)	140(3)		
$010H10A\cdots013^{i}$	0.868(18)	1.79(2)	2.645(4)	169(4)		
010—H10B…S1	0.831(19)	2.86(3)	3.642(3)	157(4)		
010—H10B…07	0.831(19)	1.891(19)	2.706(4)	166(4)		
N2— $H2$ ···· $S2$ ⁱⁱ	0.88	2.79	3.585(3)	151.5		
N2—H2…011 ⁱⁱ	0.88	1.88	2.744(4)	168.1		
$N5-H5\cdots S1^{iii}$	0.88	2.86	3.621(3)	145.6		
N5—H5…O5 ⁱⁱⁱ	0. 88	1.89	2.768(4)	172.9		

对称码: (i) x, y, z+1; (ii) x+1/2, y-z+1/2; (iii) x-1/2, y, -z+1/2。

图1 配位聚合物的分子结构图

图 2 配位聚合物晶体中二聚体内的相互作用

图 3 配位聚合物的一维结构图

图 4 配位聚合物的三维堆积图

SO²⁻ 为桥联配体。相应的键长为:苯并咪唑配体 Cu1 – N1 为1.993 Å, Cu2 – N4 为1.961 Å, DMF 配体的 Cu1 – O1 为2.002 Å, Cu2 – O8 为1.996 Å; H₂O 分子配体 Cu1 – O2 为 1.964 Å, Cu1 – O3 为 1.992 Å, Cu2 – O9 为 1.978 Å, Cu2 – O10 为1.987 Å;桥联配体 SO²⁻₄ Cu1 – O4 为 2.452 Å, Cu1 – O5 为 2.469 Å, Cu2 – O11 为 2.414 Å, Cu2 – O12 为 2.493 Å。整个 Cu(II) 为拉长的八面 体, 其中 O1、O5 和 O11、O12 分别位于轴向位置, 它们比 相应的赤道位置的 Cu – O 的键长要长大约 0.5 Å, 说明 存在 Jahn – Teller 效应。

配位聚合物 $[Cu(MB)(DMF)(H,O), (\mu - SO_4)]$ 中的 Cu(II) 与苯并咪唑的 N 形成的键与相邻 4 个 Cu -O 键形成的键角分别为: N1 - Cu1 - O1 为 89.41°, N1 -Cu1-03为92.86°, N1-Cu1-04为96.00°, N1-Cu1 - 05 为 86.73°。Cu(II) 与水分子中的 O(2) 配位形成 的键与相邻四个含 Cu(Ⅱ)键之间形成的键角分别为: O2 - Cu1 - O1 为 87. 67°, O2 - Cu1 - O3 为 90. 50°, O2 -Cu1 - O4 为 88.48°, O2 - Cu1 - O5 为 85.54°。Cu(II) 与 SO_4^2 的 0 所成的键与邻近的 01,03 所形成的键角 分别为:05 - Cu1 - 01 为 88.58°,05 - Cu1 - 03 为 88.85°,04 - Cu1 - 01 为 86.60°,04 - Cu1 - 03 为 87.73°。与Cu(II)配位的12个键都接近于90°,几乎两 两相互垂直。空间相对的两个分子与 Cu(Ⅱ) 形成的键 之间的3个键角分别为:N5-Cu1-O2为174.51°,O1 - Cu1 - O2 为 174.08°, O4 - Cu1 - O5 为 172.47°。相 对两个分子与 Cu(II) 成键之间的键角接近于 180°, 几乎 在一条直线上。苯并咪唑分子所在平面与 08 - Cu2 -N4 所在平面有一定角度,其扭角为155.40°。

由图2和图3可知,H₂O分子与同一子单元内、另 一子单元内以及相邻结构单元中的SO₄²⁻存在氢键作 用,氢键数据见表2。两个子单元通过氢键相互作用连 接起来形成二聚体。配位聚合物[Cu(MB)(DMF) (H₂O)₂(μ-SO₄)]_n通过桥联SO₄²⁻两个Cu(II)和分子 之间氢键相互作用连接起来,沿 c轴方向形成一维结 构。这些一维链之间通过链间的氢键作用,在空间形成 三维的网状立体结构。

3 结束语

合成配合物[Cu(MB)(DMF)(H₂O)₂(μ-SO₄)]_n, 并确定了晶体结构,配合物为斜方晶系,形成了六配位 拉长的八面体构型,通过氢键作用形成一维结构。一维 链通过链间氢键作用,形成三维的网状结构。

参考文献:

- [1] Yu Q, Zeng Y F, Zhao J P, et al. Zeolite-like Metalorganic framework based on a flexible 2-(1H-benzimidazol-2-ylthio) acetic ligand: synthesis, structures, and properties[J].Cryst Growth Des.,2010,10(4):1878-1884.
- [2] Chen J Q, Cai Y P, Fang H C, et al. Construction of three-dimensional metal-organic frameworks with helical character through coordinative and supramolecular interactions[J].Cryst Growth Des.,2009,9(3):1605-1613.
- [3] Rodionov V O,Presolski S I,Gardinier S,et al.Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition[J].J Am Chem Soc,2007,129(42):12696-12704.
- [4] Duan L, Hou L D, Lee T W, et al. Solution processable small molecules for organic light-emitting diodes[J].
 J.Mater.Chem., 2010, 20(31):6392-6407.
- [5] Shang X M,Wu J Z,Li Q S.Interaction of dialkyltin(IV) bishydroxamates with 5'-AMP or DNA: the impact of carbon chain length to coordination properties[J].Chin.J. Chem.,2008,26(4):627-630.
- [6] 李 焱,马会强,王玉炉.苯并咪唑及其衍生物合成与应用研究进展[J].有机化学,2008,28(2):210-217.
- [7] Tebbe M J,Jensen C B,Spitzer W A,et al. The effects of

antirhino-and enteroviral vinylacetylene benzimidazoles on cytochrome P450 function and hepatic porphyrin levels in mice[J].Antiviral Res.,1999,42(1):25-33.

- [8] Hu L X,Kully M L,Boykin D W,et al.Synthesis and in vitro activity of dicationic bis-benzimidazoles as a new class of anti-MRSA and anti-VRE agents[J]. Bioorg Med Chem Lett.,2009,19(5):1292-1295.
- [9] Wannalerse B, Tuntulani T, Tomapatanaget B, Synthesis, optical and electrochemical properties of new receptors and sensors containing anthraquinone and benzimidazole units[J]. Tetrahedron 2008,64,10619-10624.
- [10] 黄炎俊,赖川,谢斌,等.2-(苄硫基)苯并咪唑与2 (对氯苄硫基)苯并咪唑的合成及缓蚀性能研究
 [J].化学世界,2011(5):306-316.
- [11] Aljourani J,Raeissi K,Golozar M A.Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution[J].Corro Sci.,2009,51(8):1836-1843.
- [12] Du X D,Wu T,Xiao H P,et al.Hight thermal stable helical coordination polymers[J].Inorganic Chemistry Communications, 2010,13:522-525.
- [13] Liu C W,Irwin M D,Mohamed A A,et al.Cluster selfassembly of centered cubes of copper(I) with dialkyligands.X-ray structures of [Cu8(DDP)6(μ 8-X)]PF6 (DDP = S2P(OiPr)2;X = Cl or Br) and their relationship to oxide and sulfide centered zinc(II) dialkyldithiophosphates,[Zn4(DDP)6(μ 4-S or O)][J]. Inorg Chim Acta,2004,357:3950-3956.
- [14] Wang M L,Liu B L.Synthesis of 2-mercapto-benzimidazole from the reaction of o-phenylene diamine and carbon disulfide in the presence of potassium hydroxide
 [J]. Chinese Institute Chem. Engin., 2007, 38 (2):161-167.

Synthesis, Characterization and Crystal Structure of Coordination Polymer [$Cu(MB)(DMF)(H_2O)_2(\mu - SO_4)$]_n

ZHANG Xiu-lan^{a,b}, XIE Bin^a, CAI Shu-lan^{a,b}, LIN Xiao^c, ZHU Sha-sha^c

(a. Institute of Functional Materials; b. School of Chemical and Pharmacentical Engineering; c. School of Material and Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000 China)

Abstract: A new coordination polymer [Cu(MB)(DMF) (H₂O)₂ (μ -SO₄)]_n(MB = benzimidazole) was synthesized and characterized by means of elemental analysis, Ultraviolet-visible spectroscopy and X-ray structure analysis. The

coordination polymer crystallizes in Orthorhombic system, space group $Pn2_1a$ with a = 24.2574(5) Å, b = 17.7364(5) Å, c = 7.0006(2) Å, V = 3011.94(14) Å³, $Dc = 1.706 Mg/m^3$, Z = 8, F(000) = 1592, $\mu = 1.63 mm^{(1)}$, S = 1.03, $(\Delta/\sigma)_{max} = 0.001$, and final $R_1 = 0.039$, $wR_2 = 0.0822$ $[I > 2\sigma(I)]$. The coordination polymer $[Cu(MB)(DMF)(H_2O)_2(\mu - SO_4)]_n$ contains two asymmetric sub-units. Each sub-unit contains a Cu(II) atom, a SO_4^{2-} group, a benzimidazole, a DMF and two H₂O molecules. The Cu(II) atom is octahedrally coordinated by a nitrogen atom from benzimidazole molecule, an oxygen atom from DMF, two oxygen atoms from two H₂O molecules and two oxygen atoms from two SO_4^{2-} groups. In addition, the Cu(II) ion occupies the center of octahedron, O1, O5 and O11, O12 occupy axial position and SO_4^{2-} is bridged to two Cu(II) ions, respectively. The two sub-units are held together by hydrogen bonding interactions. One-dimensional structures along the *c* axis are formed by bridged ions SO_4^{2-} and hydrogen bonding interactions and further linked into three-dimensional networks by inter-chains hydrogen bonding interactions.

Key words: Benzimidazole; coordination polymer; crystal structure

(上接第17页)

- [11] Liang H C,Xue M T,Lindark W.Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution [J]. Environ. Sci. Technol., 2004,38(24):6875-6880.
- [12] Yin M C,Li Z S,Kou J H,et al.Mechanism investigation of visible light-Induced degradation in a heterogeneous TiO₂/Eosin Y/Rhodamine B System [J]. Environ. Sci. Technol.,2009,43(21):8361-8366.

Photocatalytic Activity of Ag/SnO₂ Prepared by Photodeposition Method

XIAO Zheng-hua^{1,2}, LI Jian-zhang^{1,2}, ZEN Jun^{1,2}, HU Wei^{1,2}, HE Jin-jin^{1,2}

(1. Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Zigong 643000, China; 2. Sichuan University of Science & Engineering, Zigong 643000, China)

Abstract: Ag/SnO_2 photocatalysts with different molar ratio of Ag/Sn (0, 0. 25%, 0. 50%, 0. 75%, 1. 00%, 1. 25% and 1. 50%) were prepared by photodeposition method. The photocatalysts were characterized by X-ray diffraction (XRD), UV/V is diffuse reflectance (DRS), and the photo-induced charge separation efficiency was tested using benzoquinone (BQ) as scavenger. The results show that Ag/SnO_2 absorbs much more light than SnO_2 in the visible light region, the 1% Ag sample possesses the best photocatalytic activity among all of the prepared photocatalysts, and higher photo-induced charge separation efficiency is beneficial to the photocatalytic activity of SnO_2 .

Key words: SnO₂;Ag; photocatalysis; Methyl orange