Feb. 2013

文章编号:1673-1549(2013)01-0098-03

DOI:10.3969/j.issn.1673-1549.2013.01.024

几类新空间的性质及其相互间的关系

幸华雄,杨思鑫,吴昭鑫

(成都理工大学应用数学系,四川 成都 610059)

摘 要:在1-66紧、2-66紧、3-66紧、 0^{**} -66紧以及强仿紧的基础上引入了1-base-66紧、2-base-66紧、3-base-66紧、 0^{**} -base-66紧、 0^{**} -base-66紧以及强-base-66紧的概念。讨论了它们的性质及它们与其它空间类的关系。

关键词:1-base-仿紧;2-base-仿紧;3-base-仿紧;0**-base-仿紧;0*-base-仿紧

中图分类号:0189.11

文献标志码:A

引言

John E. Porter 在文献[1]中定义了基-仿紧空间,并研究了基-仿紧空间的性质. 彭良雪引入了几种新空间类并对其性质关系进行了初步探讨^[2]。本文在此基础上引入了几种新空间类,并对其性质及关系做了初步研究,文中未做声明的拓扑学术语及相关结论见文献[3-8]。

 \mathscr{V} 是 \mathscr{U} 的开加细:对任意 $V \in \mathscr{V}$, 都存在 $U \in \mathscr{U}$, 使得 $V \subset U$, 且 $\cup \mathscr{V} = \cup \mathscr{U}$ 。

 \mathscr{V} 是 \mathscr{U} 的弱开加细:对任意 $V \in \mathscr{V}$,都存在 $U \in \mathscr{U}$,使得 $V \subset U$,且 $\cup \mathscr{V} \subset \cup \mathscr{U}$ 。

1 基本定义

定义 $\mathbf{1}^{[1]}$ A 在 X 中 1 - 仿紧 $: A \subset X$, 对 X 的任意开覆盖 \mathcal{U} , 有开加细 \mathcal{V} , \mathcal{V} 在 A 中的每一点 y 局部有限 (即存在 X 中的开集 V_y , 使得 $|\{B:V_y\cap B\neq\phi,B\in\mathcal{B}'\}|$ < w(X))。

定义 2^[1] A 在 X 中 2-仿紧: $A \subset X$, 对 X 的任意开覆盖 \mathcal{U} , 都存在 \mathcal{V} 是 \mathcal{U} 的弱开加细, $A \subset \cup \mathcal{V}$, 且 \mathcal{V} 在 A 中每一点 y 局部有限。

定义 $3^{[9]}$ A 在 X 中 3-仿紧: $A \subset X$,对 X 的任意开覆盖 \mathcal{U} ,都存在 A 中的开集族 \mathcal{V} , \mathcal{V} 是 \mathcal{U} 的弱开加细,

 $A = \bigcup \mathcal{V}$. 目 \mathcal{V} 在 A 中每一点 γ 局部有限。

定义 $4^{[1]}$ A 在 X 中正则 A \subset X ,对 X 的任一闭集 B ,对任意 $y \in A \cap (X \setminus B)$,都有 X 中的两个不相交的开集 $U \setminus V$,使得 $y \in V$, $A \cap B \subset U$ 。若 $y \in V$, $B \subset U$,称 A 在 X 中超正则 。

定义 $5^{[1]}$ A 在 X 中强正则 $:A \subset X$,对 X 的任一闭集 B ,对任意 $y \in X \setminus B$,都有 X 中的两个不相交的开集 $U \setminus V$,使得 $y \in V$, $A \cap B \subset U$ 。

定义 $6^{[3]}$ A 在 X 中 0^{**} - 仿紧 : $A \subset X$, 对 X 的任意开集族 \mathcal{U} , 若 $A \subset \cup \mathcal{U}$, 都有弱开加细 $\mathcal{V}(X$ 中的开集),使得 \mathcal{V} 在 X 中局部有限,且 $A \subset \cup \mathcal{V}$ 。

定义 7^[3] A 在 X 中 0 * - 仿紧 : $A \subset X$, 对 X 的任意开覆盖 \mathcal{U} , 都存在弱开加细 \mathcal{V} , 使得 $A \subset \cup \mathcal{V}$, 且 \mathcal{V} 在 X 中局部有限。

定义 $8^{[3]}$ A 在 X 中强仿紧 A \subset X ,对 X 的任意开集族 \mathcal{U} ,若 A \subset \cup \mathcal{U} ,都有 \mathcal{V} 是 \mathcal{U} 的弱开加细,且 \mathcal{V} 在 A 中局部有限 A \subset \cup \mathcal{V} 。

定义 9 $A \in X \oplus 1$ -base- 仿紧 $: A \subset X$,如果存在 X的一组基 $\mathcal{B}, |\mathcal{B}| = w(X)$,对 X的任意开覆盖 \mathcal{U} ,都存在 $\mathcal{B}' \subset \mathcal{B}$,使得 \mathcal{B}' 在 A 中的每一点 y 局部有限(即存在 X 中的开集 V_y ,使得 $|\{B:V_y \cap B \neq \phi, B \in \mathcal{B}'\}| < w(X)$).

定义 10 $A \in X + 2$ -base-仿紧: $A \subset X$, 如果存在 X

收稿日期:2012 -09-10

基金项目:安徽省高等学校省级优秀青年人才基金项目(2010SQRL158)

作者简介:幸华雄(1990-), 男, 四川内江人, 硕士生, 主要从事拓扑学方面的研究, (E-mail) 99528780@ qq. com

的一组基 \mathcal{B} , $|\mathcal{B}| = w(X)$, 对X的任意开覆盖 \mathcal{U} , 都存在 $\mathcal{B}' \subset \mathcal{B}$, 使得 $A \subset \cup \mathcal{B}'$, 且 \mathcal{B}' 在A中每一点y局部有限。

定义 11 A 在 X 中 3-base-仿紧: A \subset X ,如果存在 X 的一组基 \mathcal{B} , $|\mathcal{B}| = w(X)$,对 X 的任意开覆盖 \mathcal{U} ,都存在 A 中的开集族 \mathcal{B}' ,且 \mathcal{B}' \subset \mathcal{B} ,使得 $A = \cup \mathcal{B}'$,且 \mathcal{B}' 在 A 中每一点 y 局部有限。

定义 12 A 在 X 中 0^{**} -base-仿紧: $A \subset X$,如果存在 X 的一组基 \mathcal{B} , $|\mathcal{B}| = w(X)$,对 X 的任意开集族 \mathcal{U} ,若 $A \subset \cup \mathcal{U}$,都有 $\mathcal{B}' \subset \mathcal{B}$,使得 \mathcal{B}' 在 X 中局部有限,且 $A \subset \cup \mathcal{B}'$ 。

定义 13 $A \in X \to 0^*$ -base-仿紧: $A \subset X$, 如果存在 X 的一组基 \mathcal{B} , $|\mathcal{B}| = w(X)$, 对 X 的任意开覆盖 \mathcal{U} , 都存在 $\mathcal{B}' \subset \mathcal{B}$, 使得 $A \subset \cup \mathcal{B}'$, 且 \mathcal{B}' 在 $X \to \mathbb{B}$ 中局部有限。

定义 14 A 在 X 中强-base-仿紧 : A \subset X ,如果存在 X 的一组基 \mathcal{B} , $|\mathcal{B}| = w(X)$,对 X 的任意开集族 \mathcal{U} ,若 A \subset \cup \mathcal{U} ,都有 \mathcal{B}' \subset \mathcal{B} ,使得 \mathcal{B}' 在 A 中局部有限,且 A \subset \cup \mathcal{B}' 。

2 主要结论及其证明

定理 1 仿紧空间 X 的任意闭子集都是在 X 中 0^{**} -base-仿紧的。

证明 设仿紧空间 X 的闭子集 A , 对 X 的任意开集 族 \mathcal{U} ,且 $A \subset \cup \mathcal{U}$ 。则有 : $\mathcal{U} \cup (X \setminus A)$ 是 X 的一个开覆 盖。由于 X 是仿紧空间,所以可知 $\mathcal{U} \cup (X \setminus A)$ 有局部 有限开加细 \mathcal{B}' ,因此 \mathcal{U} 有局部有限开加细 \mathcal{B}_0' ,且 \cup \mathcal{B}_0' = \cup \mathcal{U} 。故有 $A \subset \cup$ \mathcal{B}_0' ,因此 A 在 X 中 0^{**} -base-仿紧。

定理2 正则空间的可数子集都是在该空间中强-base-仿紧的。

证明 设 X 是一正则空间,A 是 X 一可数子集。对 X 的任意开集族 \mathcal{U} ,且 $A \subset \cup \mathcal{U}$ 。对任意 $x \in A$,因为 $A \subset \cup \mathcal{U}$,所以存在 $U_x \in \mathcal{U}$,使得 $x \in U_x$ 。由于 X 是正则空间,可知存在 x 的开领域 V_x ,使得 $x \in V_x \subset \overline{V}_x \subset U_x$ 。令 $\mathscr{V} = \{V_x : x \in A\}$,则有 $A \subset \cup \mathscr{V} \subset \cup \mathcal{U}$,显然 $\mathscr{V} \not \in \mathcal{U}$ 的弱开加细。又 A 是 X 的可数子集,所以 \mathscr{V} 在 A 中每点局部有限。所以,A 在 X 中强-base-仿紧。

定理 3 $A \subset X, X \not\in T_2$ 空间,且 $A \in X \mapsto 0^{**}$ -base-仿紧,则 $A \not\in X$ 的闭子集。

证明 对任意 $y \in X \setminus A$,由于 $X \in T_2$ 空间,故 $y \in A$ 中每点 x 可开集分离。即 $\forall x \in A$,存在 x 的开领域 V_x 与 y 的开领域 V_y ,使得 $V_x \cap V_y = \phi$ 。又令 $\mathscr{S} = \{V_x : x \in A\}$,则 $\mathscr{D} \notin A$ 的一开覆盖,由 A 在 X 中 0^{**} -base- 仿紧可知,存在 $\mathscr{B}' \subset \mathscr{B}(\mathscr{B}) \times X$ 的一组基), $A \subset U \mathscr{B}'$,且 \mathscr{B}' 在

X 中局部有限。对 y,由 \mathscr{B} '在 X 中局部有限, $\exists O_y$,使得 $|(\mathscr{D})_{oy}| < w(X)$,其中 $(\mathscr{D})_{oy} = \{V_{xi} : V_{xi} \cap V_y^i = \phi, V_{xi} \cap O_y \neq \phi\}$ 。令 $U_y = \bigcap_{i=1}^n V_y^i \cap O_y$ 为开集,则由上可知, $U_y \cap A = \phi$,故 $A \not\in X$ 的闭子集。

定理 4 $A \subset X$, A 在 X 中 0^{**} -base- 仿紧, 且 X 是超正则的,则对含 A 的任一开集 U,有开集 V,使得 $A \subset V \subset \overline{V} \subset U_{\circ}$

证明 对任意 $x \in A$,因为 $A \subset U$ 开,由 X 超正则可知,存在 V_x 开于 X,使得 $x \in V_x \subset \overline{V}_x \subset U_x$ 。又 $\mathscr{V} = \{V_x \colon x \in A\}$ 是 A 的一开覆盖,因 A 在 X 中 0^{**} -base-仿紧,故 V 有局部有限的弱开加细 $\mathscr{B}' \subset \mathscr{B}(\mathscr{B})$ X 的一组基),令 $V = \bigcup \mathscr{B}'$,则 $A \subset V \subset \overline{V} \subset U$ 。

定理 5 $A \subset X, X \not\in T_2$ 空间,且 $A \in X \mapsto 0^*$ -base-仿紧,则 $A \in X$ 中强正则。

证明 对 X 的任意闭子集 B, 对 $\forall y \in X \setminus B$, $\forall x \in B$, 由于 X 是 T_2 空间,故分别存在 x 、y 的开领域 U_x 、 V_y ,使得 $V_x \cap V_y = \phi$ 。令 $\mathcal{U}' = \{U_x : x \in B\}$,则 $\mathcal{U} = \mathcal{U}' \cup (X \setminus B)$ 是 X 的一开覆盖,又 A 在 X 中 0^* -base-仿紧,故存在 $\mathcal{B}' \subset \mathcal{B}(\mathcal{B})$ X 的一组基), \mathcal{B}' 在 X 中局部有限且 X 是 X 中局部有限且 X 是 X 空间,存在 X ,使得 X 中局部有限且 X 是 X 空间,存在 X ,使得 X 。

定理 6 $A \to X + 0^{**}$ -base-仿紧,且 $A \to X + 1$ -base-仿紧。

证明 设 X 的任意开覆盖 \mathcal{U} ,由 A 在 X 中 0^{**} -base-仿紧可知,存在 $\mathcal{B}' \subset \mathcal{B}(\mathcal{B})$ X 的一组基), \mathcal{B}' 在 X 中局部有限且 $A \subset \cup \mathcal{B}'$ 。由定理 4 可知,存在开集 V,使得 $A \subset V \subset \overline{V} \subset \cup \mathcal{B}'$ 。令 $\mathcal{V} = \mathcal{B}' \cup \{U \setminus \overline{V} : U \in \mathcal{U}\}$,则 \mathcal{V} 是 \mathcal{U} 的加细,且在 A 中每点局部有限。故 A 在 X 中 1-base-仿紧。

定理7 *A* 是正规空间 *X* 的闭子集,且 *A* 在 *X* 中 2-base-仿紧,则 *A* 在 X 中 0**-base-仿紧。

证明 设 \mathcal{U} 是 X 中的任一开集族,且有 $A \subset \mathcal{U}$ 、则 $\mathcal{U} \cup (X \setminus A)$ 是 X 的一开覆盖。由 A 在 X 中 2 -base-仿 紧可知,存在 $\mathcal{B}' \subset \mathcal{B}(\mathcal{B})$ X 的一组基), \mathcal{B}' 在 A 中每 点局部有限。即任意 $\mathbf{x} \in A$,存在 $V_{\mathbf{x}}$ 开于 X,使得 $1 \nmid V_{\mathbf{x}}$ $V \neq \phi \}$ 1 < w(X)。令 $V' = \bigcup \{V_{\mathbf{x}} : \mathbf{x} \in A\}$,则 $A \subset V'$,由 X 正规可知,存在开集 $V_{\mathbf{1}}$,使得 $A \subset V_{\mathbf{1}} \subset \overline{V_{\mathbf{1}}} \subset V'$ 。令 $\mathcal{V}' = \{V_{\mathbf{1}} \cap V : V \in \mathcal{B}'\}$,则 \mathcal{V}' 在 X 中局部有限。所以,A 在 X 中 0^{**} -base-仿紧。

定理8 A 是正规空间 X 的闭子集,且 A 在 X 中

0*-base-仿紧,则 A 在 X 中 1-base-仿紧。

证明 设 \mathcal{U} 是 X 中的任一开覆盖,由 A 在 X 中 0^* -base-仿紧可知,存在 $\mathcal{B}' \subset \mathcal{B}(\mathcal{B})$ 为 X 的一组基),使得 $A \subset \cup \mathcal{B}'$ 。由 X 正规可知,存在开集 V,使得 $A \subset V \subset \overline{V} \subset \cup \mathcal{B}'$ 。令 $\mathcal{V} = \mathcal{B}' \cup \{U \setminus \overline{V} : U \in \mathcal{U}\}$,显然, \mathcal{V} 是 \mathcal{U} 的加细且在 A 中局部有限。故 A 在 X 中 1-base-仿紧。

定理9 A 是空间 X 的闭子集,且 A 在 X 中 1-base- 仿紧,则 A 在 X 中强-base- 仿紧。

证明 设 \mathcal{U} 是 X 中的任一开集族,且有 $A \subset \cup \mathcal{U}$,则 $\mathcal{U} \cup (X \setminus A)$ 是 X 的一开覆盖。由 A 在 X 中 1-base-仿 紧可知,存在开加细 $\mathcal{B}' \subset \mathcal{B}(\mathcal{B})$ X 的一组基), \mathcal{B}' 在 A 中每点局部有限。令 $\mathcal{V} = \{V' \in \mathcal{B}' : V' \cap A \neq \phi\}$,则有 $A \subset \cup \mathcal{U}$, \mathcal{V} 是 \mathcal{U} 的弱加细, $\mathcal{V} \subset \mathcal{B}$, \mathcal{V} 在 A 中每点局部有限. 因此,A 在 X 中强-base-仿紧。证毕

定理 10 $A \subset X$,A 在正规空间 $X \mapsto 0^*$ -base-仿紧,则 \overline{A} 是 base-仿紧空间。

证明 设是 X 中的任一开集族,且有 $\overline{A} \subset \cup \mathcal{U}$,则 $\mathcal{U} \cup (X \setminus \overline{A})$ 是 X 的一开覆盖。由 X 的正则性可知,有 X 的一组基 \mathcal{B} ,存在 $\mathcal{B}' \subset \mathcal{B}$,使得 \mathcal{B}' 及 $\mathcal{B}'^- = \{\overline{B}: B \in \mathcal{B}'\}$ 是 $\mathcal{U} \cup (X \setminus \overline{A})$ 的加细,由 A 在 X 中 0^* -base-仿紧可知, \mathcal{B}' 有弱加细 $\mathcal{B}_0' \subset \mathcal{B}$, $A \subset \cup \mathcal{B}_0'$,且 \mathcal{B}_0' 在 X 中局部有限,故 $A \subset \cup \mathcal{B}_0' \subset (\cup \mathcal{B}_0')^- = \cup \{\overline{B}: B \in \mathcal{B}_0'\}$ 。故有 $\overline{A} = \cup \{\overline{B} \cap \overline{A}: \overline{B} \in \mathcal{B}_0'\}$ 是 $\{U \cap \overline{A}: U \in \mathcal{U}\}$ 的局部有限闭加细. 所以 \overline{A} 是 base-仿紧空间。

推论 1 A 是正规空间 X 的闭子集,则下列叙述等价:

- (1) A 在 X 中 0 ** -base- 仿紧。
- (2) A 在 X 中 0*-base-仿紧。
- (3) A 在 X 中 1-base-仿紧。
- (4) A 在 X 中强-base-仿紧。
- (5) A 在 X 中 2-base-仿紧。

图 1 列出几种空间的关系,用 1-base-仿紧代表 A 在 X 中 1-base-仿紧,其它类似。

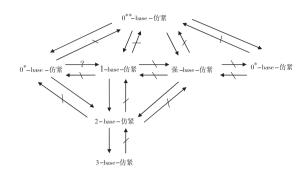


图 1 几种空间关系

参考文献:

- [1] John E.Porter, Base-paracpmpact spaces [J]. Topology and its Applications, 2003, 128:145-156.
- [2] 彭良雪.几种新空间类的性质及其相互间的关系 [J].首都师范大学学报:自然科学版,1999,20(3):1-4.
- [3] 高国士.拓扑空间论[M].北京:科学出版社,2000.
- [4] Engelking R, General Topology[M]. Heldermann Verlag, Berlin, 1989.
- [5] Arhangel A V, Genedi H M M. General Topology[M]. MGU Moscow, 1989.
- [6] 熊金城.点集拓扑讲义[M].北京:高等教育出版社, 2003.
- [7] 蒋继光.一般拓扑学专题选讲[M].四川:四川教育出版社,1991.
- [8] 纪广月.基-可数亚紧空间[J].广东工业大学学报, 2012,29(1):67-68.
- [9] Arhangel' skii A V.Relative topological properties and relative topological spaces[J]. Topology and its Applications, 1996, 70:87-99.

Property and Relationship of Several New Kinds of Topological Spaces

XING Hua-xiong, YANG Si-xin, WU Zhao-xin

(Dept. of Applied Math., Chengdu University of Technology, Chengdu 610059, China)

Abstract: Based on the definition of 1-paracompact \2-paracompact \3-paracompact \0**-paracompact \0*-paracompact \strongly paracompact \0*-base-paracompact \2-base-paracompact \3-base-paracompact \0**-base-paracompact \0**-base-paracompact \0**-base-paracompact and strongly-base-paracompact are defined, and their property and relationship are discussed.

Key words: 1-base-paracompact; 2-base-paracompact; 3-base-paracompact; 0^* -base-paracompact; 0^* -base-paracompact