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Abstract: A research on difference scheme of image gravitational field in the GVF snake model is per-

formed depending on the uniform stability and convergence conditions of the difference scheme. It is found that

the original explicit forward difference scheme puts a strict restriction on the diffusion coefficient in the partial

differential equation which decelerates the convergence speed of difference equation iteration. A new difference

scheme is put forward, which has the advantage of unconditional uniform stability and convergence, and the

restriction on the coefficient of partial differential equation is removed. Through increasing the value of the coef-

ficient appropriately, the image of boundary information transmission becomes faster. Hence, iteration calcula-

tions are decreased rapidly for a given transmission range. The simulation experiments indicate that the new

difference scheme be higher efficiency than the traditional one.
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1 INTRODUCTION

Active contour model (snake model) was proposed in
1987 and was succeeded in tracing the mouth movement on
face by Kass'''. Snake is an energy — minimizing curve. Iis
shape is constrained by internal forces, and it was dragged
to significant image characters by image force. The algo-
rithm is equal to a constrained optimization method, and the
inner constraint energy can be defined according to the spe-
cific shape of the object, which gives the model more flexi-
ble and gives a uniform solution for a wide range of visual
problems. Therefore, the algorithm has been successfully
applied in many areas of Computer Vision by more and more

[2]

researchers, such as edge extraction ™, object reconstruc-
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B4 motion track"’, image segmentation and classifi-

[5] [6]

tion
cation"” , stereo matching etc”’. However, there are many
deficiencies in the snake model, such as sensitive to the ini-
tial contour position and noise, poor convergence to the con-
cave contours.

According to many disadvantages of the traditional snake
model, many efforts have been made to improve this
model'”’. Xu and Prince'®’ proposed the gradient vector flow
(GVF) snake model in 1997. It enlarges the capture range of
traditional active contour model, and can guides the contours
tracing into the concavities of the object boundary. In this
model , a force field V(x,y) = [u(x,y),v(x,y) ] is defined

from the image by minimizing the energy function:

E = ﬂ,u(ui +ul +00 +0) + | VFP |V - Vf[Pdady (1)
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Where, [ =1 VI(x,y) |7, w is the diffusion coefficient
which regulates the weights of the first and the second item
(the more image noise, and the greater y ) and plays an
important role in the diffusion velocity of the image contour
in smooth region away from the contour. In this equation,
near the object boundary, | V7| is large, the second term
dominates and the minimization gives V = Vf; while away
from the object boundary, | V| is small and thus the sec-
ond term is small, the energy is dominated by the diffusion
term, which means the force V is extended smoothly from its
value near the object boundary'” . Therefore, the capture
range is larger than classic active contour model and there is
no need to place the initial curve entirely inside or outside
the object contours.

The force field V is obtained through solving the partial
differential equation of image gravitational field, so the
difference scheme has an important influence on the effi-
ciency and accuracy of the force field. In order to prevent
the divergent result being triggered by the magnifying dis-
cretization error of initial condition in the interactive
process, there are restrictions on the uniform stability and
convergence conditions in the original explicit forward differ-
ence scheme, which restrict the step size of the discrete
grids and the value of diffusion coefficient u, hence reduce
the computational efficiency for image gravitational field in
the GVF snake model, especially the high — definition
image with much noise.

In order to improve the computational efficiency for
image gravitational field in the GVF snake model, a new
difference scheme is proposed, which has advantages of
unconditional consistent stability and convergence, increa-
ses flexibility about parameters’ selection of discrete grids,
and finds good trade — off between accuracy and velocity of
the calculation. The simulation results show that calculation
speed of image gravitational field in the GVF snake model
can be improved rapidly by the new difference scheme
through increasing the value of diffusion coefficient . Fur-
thermore, an optimized value for diffusion coefficient y is

also discussed.
2 EXPLICIT DIFFERENCE SCHEME

The GVF snake model differs from traditional snake

model in the external energy function. The corresponding

evolution equations of the minimized energy function (1)
can be obtained by gradient descent algorithm as fol-

lows!"7 .
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Satisfying the following boundary conditions ;
{(u(x,y,o) = f.(x,y),(x,y) € 0
(v(x,y,0) = f,(x,y),(x,y) € 2
Where, f, = df(x,y)/dx,f, = df(x,y)/dy. The defi-

(3)

nite solution of partial differential equations (2) in the
initial — boundary value problem can be solved by the Fi-
nite Difference method. In order to establish a difference
scheme, let

b(x,y) = fi(x,y) + fi(x,y)

¢ (w,y) = fi(x,y)b(x,y)

(x,y) = f(x,5)b(x,y)

Simultaneously, considering the forward difference in time

(4)

and the centered difference in space:

n+l n
Ju Ui — Ui
at T
n+l n
aw Yy —U,
at T
2 n n _ n
gu Uy YUy, Zui,j
2 2
ox h
. . (5
Jdu Wi T U — LU
2 2
ay h
N n n
Jdv Vi, YU~ 21’;,]’
2 2
ox h
N n n n
Jv Vi U ZUL‘,]'

Where, h,, h and Tare corresponding mesh steps. Leth, =
h, = h, substitute Eq. (4) and Eq. (5) into Eq. (2), the
explicit forward difference scheme of the image gravitational

field in the GVF snake model is"®’.

n+l n 1
uln = (1 =b,7=4r)u; +c; ;7 +

n n n n
r(ui+],j tuy; tu g, t ui,,j—l) (6)
n+l (l _ b _4 ) n + 2 +
v, = T —4r)v T

n n n n
r(vi+l,j TtV T vi,j—l)

2 . . .
Where, r = ur/h”. According to the discrete maximum

principle of Difference Equations Solution,if b(x,y) ,c¢' (x,
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¥) ,cz(x,y) have bounded initial values, the uniform sta-
bility and convergence condition of the explicit forward
difference scheme is™®

r=pur/h* <0.25 (7)
or

w < h’/dr (8)

From Eq. (8), the diffusion coefficient y is restricted
not to exceed a specified value; otherwise, the result of
image gravitational field in the GVF snake model will be
divergent. Corresponsively, the mesh step h in a digital
image is ordinarily assumed as 1 pixel, and the mesh step is
assumed as an iterative step size. Therefore,h =1,7=1 and
the uniform stability and convergence condition of difference

. (12
scheme is!'?.

n<0.25 9)

From the Eq. (9) , the value of diffusion coefficient u
is constraint in a small range in order to satisfy the uniform
stability and convergence condition of difference scheme.
Experiments indicate higher value of the diffusion coefficient
wm would help the boundary information to transmit faster. A
tradeoff numerical value of the diffusion coefficient u
between the stability and the boundary information transmis-
sion speed is about 0. 2.

In order to break through the constraint on the value of
diffusion coefficient g so that a higher boundary information
transmission speed is obtained, and a new difference

scheme is promoted.

3 IMPLICT DIFFERENCE SCHEME

3.1 Establishment of Implicit Difference Scheme
Choose the backward difference in time and the cen-

tered difference in space, yield

n+l

n
ou Wi ~ Ui
Jat T
n+l n
o Vi U
at T
n+l n+l n+l
2 u +u -2u
Jd'u i+l o1, i
2 2
ox h,
2 n+l n+l 2 n+l (1())
Jdu Wi t U — 2U;
2 2
Iy h
Y
n+l n+l n+l
2 2
Jv Vigy YU — 40
2 2
ox h
2 n+l n+l n+l
Jdv Vi TV~ 2”i,1‘

Leth, = h, = h, substitute Eq. (10) and Eq. (4) into
Eq. (2), the iterative scheme of the explicit backward
difference of the image gravitational field in the GVF snake
model

(1 + bi'j»T + 4r)u,'.';I —r(utl +

i+,

n+l n+l n+l

n 1
wli; F i, v ) = g et

(11)

1 I
(1 + b, ;T + 4r)1}:'; - (o} Gt
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Where, M N is the number of grid in the directions
of x and y. The grid nodes are of non — natural order
which is from left to right (i 1) , from down to up
(71 ). So Eq. (9) can be transferred to equivalent linear
equations:

A =,

Lo

(12)

Where
B, -E
-E B, -E
. -E B, -E
-E By, -E
-E B,

Where E is a unit matrix of M —order, B, are tri — diagonal

sub matrices of M — order

e, - 1
-1 e, -1
-1 e -1
B, = i3
-1 €im-1 1
-1 €im
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ande,; =4 + (1 +b,,7)/r, cal term
fz — (un + CIT)/r,fZ — (1}” + CZT)/T. 87;:1 — g;\j—ll‘ei(ﬁjhl-*ﬁ,kh\) (17)
3.2 Fourier — von Neumann Stability Analysis By substitute Eq. (17 ) into discretized Eq. (14), we
The stability of finite difference schemes is closely obtain!" '’
associated with numerical errors. A finite difference scheme (I + br + 4rsin’( B.h./2) +
is stable if the errors made at one time step of the calcula- 4rsin’(B,h./2)) € = &, (18)
tion do not cause the errors to increase as the computations Define the amplification factor
are continued. So the uniform stability of implicit difference G(B. B,,7) = ‘fr[l /€L, (19)

Eq. (9) is determined by the error 8,('),/; which is introduced
during the discretion of the initial condition, not being
amplified during the calculation of the difference scheme
(the discretion of the boundary condition and the solving
process of the difference equation are assumed not to intro-
duce any other errors) .

Define the numerical error 7, as

g = Wy Uy (13)
where, @7 is the numerical solution obtained in finite preci-
sion arithmetic, u}, is the solution of implicit difference Eq.
(11). Since the exact solution u}, must satisfy the dis-
cretized equation exactly, the errorg;, must also satisfy the
discretized equation'"’.

(I +br - rﬁz)g_;’vzl =&,
(J,k) e 2,,0<n <N
sj-{k c (j,k) e 0,

‘9('),1{ =0 (j,k) € 002,

J

(14)

where , & ,6?15 the finite difference operator, and ¢ is a con-
stant. The Eq. (11) and Eq. (14) shows that both the
error ¢, and the numerical solution u}, have the same
growth or decay behavior with respect to time. For linear
differential equations with periodic boundary condition, the
spatial variation of error &, may be expanded in a two -
dimensional Fourier series.

+o
n+l 27(lx+ly)
Z &L e

L=

S, g ()

L=

8n+1 (x ,y)

Where, B, = 27l,,B, = 27l ,f;”ll satisfy Parseval equali-

x

tym] .

+oo

1 .1
[[ e oy Pardy = 3 [ P (16)
1

=

Since the difference equation for error is linear ( the
behavior of each term of the series is the same as series

itself) , it is enough to consider the growth of error of a typi-

So the amplification factor of the implicit difference Eq.
(11) is
G(B,,B,,7) = (I +br +4rsin*(B,h,/2) +
4rsin’(B,h,/2)) " (20)
For b = | Vf|*, obviously, the formula is tenable for
anyB, ,B,and r as follows:
[G(B,.B,,7) <1 (21)

[15]
’

Therefore, according to Lax Equivalence Theorem
the implicit difference Eq. (11) is unconditional uniform
stability and convergence. Consequently, the value of
diffusion coefficient g is of no limits and larger value can
be obtained. Through appropriately increasing the value
of diffusion coefficient u, the diffusion speed of the image
contour is significantly improved, and less iteration is

needed.

4 THE ALGORITHM IMPLEMENTATION
AND NUMERICAL EXPERIMENT

4.1 The Algorithm Implementation

Although the new difference scheme set no limits to u
and the diffusion speed of the image contour can be signifi-
cantly improved through appropriately increasing the value
of w, the algorithm implementation is more complex than
that in the traditional explicit forward difference scheme due
to the large sparse three — diagonal square — matrix implicit
Eq. (12). The highly efficient formation of matrix A and
the proper solution method have a direct relation to the solu-
tion efficiency and accuracy. Matrix A is a diagonally —
dominant matrix, and the diagonal elements of fluctuation
range (e,; =4 + (1 +b,,7)/r,0<b,; = | Vi |? <\2)
are small. Therefore, the condition number A of coefficient
matrix A is reasonable, and the steepest descent method

without preprocess can be used.
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The algorithm is designed as follows

Algorithm ; Unpreconditioned Steepest Descent Iteration

1 [f,w,n]<—get_initialization_imf( image )

2 S ghd e = B e

3 [my,n,] «size(f)

%  returns the size of matrix f in separate variables m and n

4 P <«—zeros(n,,n,) ;Q < zeros(mg,m,)

5 Puagy<——-10G=1.23,..,n)
Qiup <=1 =123,...,m)
P—P+PQ«—Q+Q" +4E,
A P®E, +E, 0

%  represents the Kronecker product of the two matrix

8 A« A +diag(by by, by by o by by by
Dy s sbn)

9 el fO2 + /) /]

%  Orepresents the Hadamard product of the two matrix

10 & veelf,00F +£)/u]

11 Tterate = 1,2:--+ until n

12 bx—c' + w/p

13 Initialize : ¥ « b, - Au®

14 Iterate £ =0,1------ . until convergence
15 Fe—<rt b s < AR S

16 ul:+l Ful; + akrlf

17 AR L T

18 end

19 b, ¢ +v/u

20 Initialize : 0 « b), - AP

21 Iterate £ =0,1------ . until convergence
22 Fe—<rt it s < AR >

23 DLALIPEPIL Y LI

24 P gk Ak

25 end

26 end

27  [u, v]«vec_to_matrix(u, v)

%  vector to matrix

4.2 The Numerical Experiment

The computer simulation experiment was performed in
the following software and hardware environments. Comput-
er type: HP ProLiant DL585 G7 Rack Mount Chassis;
Operating System: Windows 7 Server Standard (64 bit) ;
Simulation Software: MATLAB 2011 b (64 bit); CPU.
4AMD Opteron 6136; Memory; 64GB DDR3 DIMMs
PC2 - 6400 DDR SDRAM.

Fig. 1 shows the gradient vector flow field for a window —
like picture (64 x64 pixels). The diffusion coefficient g from
Fig.1 (a) = (d) are 0.2, 0.5, 1 and 2 respectively, and T
represents the calculation time consuming. Their iteration num-
bers are all set to 10. Fig.1 (a) is performed through the tra-
ditional explicit difference scheme, and Fig. 1 (b) — (d) are

performed through the implicit difference scheme. Fig. 1 shows

that calculation speed of the traditional explicit difference
scheme is slightly faster than that of the implicit difference
scheme. However, its image contour information diffusion
range is obviously smaller under the same iterations.

For further comparisons, pictures with different sizes
are adopted. Table 1 -4 exhibits comparisons in the time
consuming (7) and the speed up ratio (S,) under almost
the same diffusion range. From Table 1, the computation of
the explicit difference scheme with g =0. 1 will need 150
iterations, while the computation of the implicit difference
scheme with g = 0.50 will only need 30 iterations;
Sp =5.4252 with 100 x 100 pixels gradually increases to
Sp =11. 2910 with 3200 x 3200 pixels, which implies that the
speed up ratio is more evident for the large — size pictures.
The performance of implicit difference scheme through
increase the value of y is significant. From Table 1 -2,
when u< 1, the speed up ratio is almost proportional to the
value of w, From Table 2 -4, when u >1, the increasing of
convergence speed begins not evidently. In order to obtain an
optimized value of u, the chart of the speed up ratio (Sp) is
drawn. From Fig. 2, the speed up ratio (S,) is almost no
change with the increasing of u when u=2. Therefore, the
optimal value of the diffusion coefficient y is about 2.

Table 1 Performance comparison between explicit
difference scheme (. =0.10)and implicit difference
scheme (u =0.50)

explicit implicit
experimental difference difference S (1/
picture scheme scheme TI’ )
(‘pixel) (u=0.10) (u=0.50) 0.50
n T(s) Noso  Toso(s)
100 x 100 150 0.4823 30 0.0889 5.4252
200 x 200 150 5.9860 30 0.9843 6.0815
400 x 400 150 50.2336 30 7.9578 6.3125
800 x 800 150 283.585 30 27.3314 10.375
1600 x 1600 150 774.483 30 70.7150 11.192
3200 x3200 150 3138. 10 30 281.321 11.291

Table 2 Performance comparison between explicit
difference scheme (. =0.10)and implicit difference
scheme (u =1.00)

explicit implicit
experimental difference difference S (T
picture scheme scheme /T” )
(pixel) (u =0.10) (n =1.00) .00
n T(s) .00 Ty g0(s)
100 x 100 150 0.4823 16 0.0514 9.3833
200 x 200 150 5.9860 16 0.5929 10. 0961
400 x 400 150 50.2336 16 4.5055 11.1494
800 x 800 150 283.585 16 15. 0820 18.8029
1600 x 1600 150 774.483 16 41.7150 18.9736
3200 x3200 150 3138. 10 16 166. 8924 19.1672
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(a) 4 =0.20,n=10,7=0.017938 s

() R=1.00,1=10,7=0.018393 s

(b) #=0.50,0=10,7=0.018103 s

(d) #=2.00,n=10,7=0.018264 s

Fig.1 the gradient vector flow field for a window - like picture

Table 3 Performance comparison between explicit
difference scheme (y =0.10) and implicit difference
scheme (u =2.00)

explicit implicit
experimental difference difference S(T
picture scheme scheme /T” )
(pixel) (4 =0.10) (12=2.00) 2
n T(s) Moo Thoo(s)
100 x 100 150 0.4823 13 0.0436 11.0619
200 x 200 150 5.9860 13 0.4977 12.0273
400 x 400 150 50.2336 13 3.7485 13.4010
800 x 800 150 283.585 13 13.0806 21.6791
1600 x 1600 150 774.483 13 34.3201 23.0619
3200 x3200 150 3138.10 13 132.5911 23.6675

Table 4 Performance comparison between explicit
difference scheme (y =0.10) and implicit difference
scheme (u =5.0)

explicit implicit
experimental difference difference S (T
pig:ture scheme scheme /TP )
( pixel) (u =0.10) (1 =5.00) 5.00
n T(s) Ns o0 T5.00 ()
100 x 100 150 0.4823 12 0. 0406 11.8793
200 x 200 150 5.9860 12 0.4274 14.0056
400 x 400 150 50.2336 12 3.4709 14.4728
800 x 800 150 283.585 12 12. 1680 23.3058
1600 x 1600 150 774.483 12 33.4781 23.6419
3200 x3200 150 3138.10 12 129.9449 24.7204

25

Fig.2 The relationship between the speed up
ratio S, and the diffusion coefficient ..

5 CONCLUSIONS

In order to improve the contour extraction speed, the
external force field of image in the active contour models:
the gradient vector flow is researched. An implicit difference
scheme is proposed which break through the value con-
straints of the diffusion coefficient y. Compared with the tra-
ditional explicit difference scheme, larger value of the diffu-
sion coefficient g can be set in this implicit difference
scheme. Through increasing the value of w appropriately,
faster diffusion speed can be achieved. The numerical exper-

iment results indicated that the time consuming in this
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implicit difference scheme will be shortened to less than
10% , and the optimal value of the diffusion coefficient y is
about 2. Consequently, it is more suitable to be applied to

real — time image processing applications.
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