文章编号:1673-1549(2012)05-0037-04

DOI:10.3969/j.issn.1673-1549.2012.05.010

土石分形检测中的数字图像处理方法研究

杜召彬",王建勋^b,平根建"

(郑州职业技术学院 a. 软件工程系; b. 机械工程系, 郑州 450121)

摘 要:土木工程人员经常用粗料颗粒分布分维、粗料轮廓分维这些结构指标作为土石混合体定量 化研究的依据,用以解释土石混合体的力学特性,并以这些参数作为土石混合体工程分类的依据。目前 技术人员以手工筛分实验来计算粒度分维数。展开对土石混合体微结构研究,劳动强度大,操作不便, 极大地制约了对土石混合体微结构的研究。提出了利用数字图像处理技术来测量土石混合体分形维数 的方法。实验验证结果表明,该方法减轻了工程技术人员手工检测的劳动强度,实用有效。

关键词:数字图像处理;土石混合体;分维数 中图分类号:TP391.4

引言

土石混合体是工程建筑必需的中间介质^[1],主要由 砾石与砂土组成,当土石混合体的分散程度达到一定条 件(量变过程),就会引起土石混合体的性质发生质变。 正是由于其具有特殊的物理力学特性和变形机理,因而 是工程中必需认真考虑和研究的课题。

由于自然界中存在的土石混合体中砾石粒径的大 小不一,采用传统的筛分试验获取其砾石含量较为困 难,难以满足工程需要。随着数字图像处理技术的发 展,被广泛应用于航空、医学、材料及土木工程等领域。 近20年来,结合分形^[2]应用的数字图像处理技术渗透 到各个学科领域,国内外诸多学者在土木工程领域进行 尝试性探索。冯志刚等^[3]采用像素点覆盖法计算了水 泥砂浆图像的分形维数;彭瑞东等^[4]利用数字图像处理 研究了岩石裂纹的分形特征;郭飞等^[5]用数字图像处理 的方法对土壤样本的分形几何特征与土壤质地间的联 系进行了研究;晏磊等^[6]对图像的三种分形维数(差分 盒计数法、数学形态学方法以及小波分析方法)的计算方 法进行了比较研究;李国宾等^[7]以小波变换近似系数的分 形维数计算,实现了磨粒图像的特征提取;李军伟等^[8]对

文献标志码:A

分形在数字图像处理中目标检测方面的应用进行了讨论; 夏政伟等^[9]运用多重分形应用于图像的局部分割。

在前人的研究基础上,本文提出了一种基于数字图 像处理的土石分形检测方法。利用数字图像处理技术 与分形理论^[10-15],在研究过程中拟采用如图1所示的技 术路线,对图2的两幅土石混合体图像进行滤波去噪、 图像分割,封闭边缘提取等处理(注:以下各图中(a)、 (b)为图2(a)、图2(b)对应的处理结果)。根据封闭目 标(砾石)边缘的边界链码计算出不同尺度下的所有目 标(砾石)的总周长和面积,最后完成分形检测及分形维 数的输出工作,为工程技术人员研究土木混合体中的砾 石含量及粒度特征提供技术支持。

1 分形理论

根据工程技术人员对土石混合体研究分析的需要, 选择最常用到的粗粒分布分形维数以及粗粒轮廓线分 形维数进行计算分析。

1.1 粗粒分布分形维数计算方法

图像中的砾石分布情况可以反映粗粒在土石混合 体中的形心以及它的含石量。本文采用盒维数网格覆 盖法来计算粗粒分形维数。具体做法如下:

收稿日期:2012-07-13

基金项目:河南省高校青年骨干教师资助计划项目(2010GCJS-297);河南省教育厅自然科学研究项目(2011C460001)

作者简介:杜召彬(1975-),男,河南南阳人,讲师,硕士,主要从事智能信息处理、数字图像处理等方面的研究,(E-mail)duzhaobin@126.com

图1 分形维数检测算法流程

图2 土石混合体

如图 3 所示,图像中含有多个砾石粗粒(图中不规则形体),以边长为 ε 的正方形网格将图像分割成规格为的小网格为(/ $L\varepsilon$) ×(/ $L\varepsilon$)的小网格(L为图像的高度),设含有粗粒的小正方形的总数为 $N(\varepsilon)$ 。如果不断改变 ε 值(ε_1 , ε_2 , ε_3 …… ε_n),则将得到相对应的小正方形的总个数序列值 $N(\varepsilon_1)$, $N(\varepsilon_2)$, $N(\varepsilon_3)$,…… $N(\varepsilon_n)$,根据 ε 和对应的 $N(\varepsilon)$ 在双对数坐标系中用直线拟合数据点($-\log\varepsilon_n$, $\log N_{en}(F)$)。若数据对在双对数坐标中存在线性特征,则表明粗粒分布具有分形特性,其斜率就作为粗粒分布分形维数的近似值。线性部分的斜率为,那么

图 3 粗粒分布分维算法示意图

1.2 粗粒轮廓线分形维数的计算方法

粗粒轮廓线分形维数是用来表明粗粒的不规则性,可以区分粗粒的粗糙度,即粗料的圆形度。本文采用的 粗粒轮廓线分形维数的计算是基于 Mandelbrot^[2]等提出 的"silt – island"方法。具体做法如下:

图 3 中封闭曲线为粗粒边沿轮廓线,在图像处理中 可以得到其相应的轮廓坐标,如果以长度为 *s* 的测尺去 测量轮廓线长度,那么相应的轮廓线长度为 $P(\varepsilon)$,同时 以相同长度 ε 的正方形网格去量测封闭曲线所占的网 格数 $A(\varepsilon)$,它代表轮廓线的面积,如果不断改变 ε 值 (如 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \dots \varepsilon_n$),则将得到相对应的轮廓线长度 序列值 $P(\varepsilon_1), P(\varepsilon_2), P(\varepsilon_3, \dots P\varepsilon_n)$,轮廓线面积序 列值 $A(\varepsilon_1), A(\varepsilon_2), A(\varepsilon_3), \dots A(\varepsilon_n)$,将面积序列值 与长度序列值对应的数据对描绘于双对数坐标中,如果 数据对在双对数坐标中存在线性特征,表明粗粒分布具 有分形特性,曲线越陡,说明轮廓线越粗糙。若线性部 分的斜率为K,那么

$$D_{p}i = -\lim_{\varepsilon \to 0} \frac{\log A(\varepsilon)}{\log P(\varepsilon)} = -K$$
(2)

2 实验步骤

2.1 土石混合体图像的预处理

由于受外界各种因素(如光照、平整度等)的影响, 利用数码相机获取的土石混合体图像通常存在大量噪 音,为了能够准确获取土石混合体相应的内部结构特 征,需对其进行去噪处理。经过去噪处理后的土石混合 体采用二值化处理(使用 Canny 算子中 Otsu 阈值分割法 进行分割^[16],结果如图 4 所示),以便用于下一步的砾 石块体的提取。其中白色(像素值为 255)表示砾石目 标,即土石混合体中的粗料,黑色(像素值为 0)表示背 景,即土石混合体中的细料。

图 4 经过二值分割后的土石混合体图像

2.2 土石混合体目标封闭边缘的提取

对比二值化处理后的图像(图4),由于砾石块的不 平整造成对光线反射的强度不同,最终导致图像在该目 标亮度上的变化,或者一些结块的沙粒也被当做块状砾 石提取出来;同时砾石上覆盖的一些细料沙粒,这些在 图像分割时会在目标体中形成孔洞。此时采用传统二 值图八向跟踪法提取边缘(图5),实验结果表明边界点 判断较为准确,跟踪后产生的轮廓边缘宽度只有一个像 素。但也存在一些问题,不能保证提取目标边缘的封闭 性,若目标内部有孔洞或者由于有一部分沙土覆盖在砾 石上,则同时提取出孔洞边界,如不将目标体内的这些 孔洞填充,在后续的周长和面积计算时会产生重复计 算;另外对于前期平滑处理无法滤掉的噪声在这里也全 部检测为边界,最终影响后续结果的计算。

图5 传统8向跟踪边界效果图

2.3 改进后的二值图像的封闭边缘跟踪算法

本文对传统二值图八向跟踪算法进行改进,改进后 的算法在提取封闭边缘的同时,利用边缘跟踪得到的中 间数据来完成对目标体内细小空洞的填充,减小了周长 和面积计算时的误差。改进后的算法能够控制边缘目 标周长,当算法检测到一个封闭边缘的同时,计算其边 缘周长,小于设定的最小目标周长即被当做噪声去除, 这样能够剔除掉前期对图像预处理时无法滤除的噪声, 能够对输出目标大小进行控制。改进后传统二值图八 向跟踪算法结果如图6(指定最小目标周长为6的情况 下得出的结果),结果显示改进后的算法对于目标体内 的孔洞填充以及去噪方面较传统算法出色的多,同时边 缘的封闭性保持也较传统算法好。

图 6 改进后的八向跟踪算法效果

3 实验结果和数据分析

得到图4的最终图像处理结果(如图6)后,可以按 照粗粒分布分形维数和粗粒轮廓。

根据分形算法的需要和本文的实际情况,在计算周 长和面积时,使用的尺度共有七个(分别是1、2、4、8、16、 32、64,计量单位为像素)。

3.1 周长和面积的计算

周长的计算,当算法每提取出一个符合要求的周 长,即周长大于指定的目标周长(最小目标周长为6个 像素),便开始计算并输出。面积的计算,首先对边缘跟 踪算法得到的目标体进行目标内部填充,然后将图像按 不同的尺寸划分成不同的网格(1×1、2×2、…、64×64, 计量单位为像素)。即使该网格内只有一个目标体的像 素点,相应的该尺度下的面积也要加1,得到表1。

表 1 图 6 周长和面积在不同尺度下的计算结果

		图 6(a)				图 6(b)		
尺度	周长	取对数	面积	取对数	周长	取对数	面积	取对数
1	4959	3.695	38076	4.580	11803	4.044	76325	4.882
2	2359	3.372	10419	4.017	5297	3.724	20616	4.314
4	1061	3.02	2904	3.463	2318	3.365	5804	3.763
8	484	2.68	810	2.908	994	2.997	1691	3.228
16	211	2.32	220	2.342	424	2.627	496	2.695
32	74	1.87	78	1.892	154	2.188	146	2.164
64	15	1.19	51	1.707	35	1.552	68	1.832

3.2 双对数坐标下直线拟合结果

根据表1得到的周长和面积数据,计算粗粒分布分 形维数(图7)以及粗粒轮廓线分形维数(图8),本文在 这里用 MATLAB 来作为直线拟合的工具。

图 7 图 6 的粗粒分布分形维数

3.3 数据结果分析

由于粗料颗粒分维数、粗料轮廓分维数经常作为土

图8 图6的粗粒轮廓线分形维数

石混合体分形待性的研究结构参数指标,粗料分维值如 图7所示,图7(a)为-1.6641,图7(b)为-1.7270。可 说明土石混合体的含石量,其绝对值越大说明土石混合 体的含石量越大。结果表明图2(a)中含石量小于图2 (b)中的含石量。而粗料轮廓分维值表征土石混合体的 几何特征,土石混合体轮廓分维与通常所说的圆形度相 对应,分维值越小说明土石混合体的粗料轮廓圆形度越好。如图 8 所示,图 8(a)为1.2056,图 8(b)为1.2619。 结果表明图 2(a)所示中的砾石轮廓较图 2(b)中所示砾 石轮廓圆形度好。

工程人员用这些结构参数指标作为土石混合体定量 化研究的依据,并与宏观物理力学性质相联系,以期获得 它们之间的定量关系,进而解释土石混合体的力学行为特 性,并以这些结构参数作为土石混合体工程分类的依据。

4 结束语

本文从数字图像处理的角度对粗料颗粒分布分维 数、粗料轮廓分维数进行了详细研究,得到的分维数据 为土木工程人员对土石混合体的力学特征进行研究提 供了依据,所检测出的粗粒分布分形维数及粗粒轮廓分 形维数所对应的物理意义经过比对后得到验证,证明基 于图像处理土石分形检测是行之有效的。

参考文献:

- [1] 油新华.土石混合体随机结构模型及其应用研究[D].北京:北方交通大学,2002.
- [2] Mandelbrot B B. The fractal geometry of nature[M].上 海:上海远东出版社,1998.
- [3] 冯志刚,周宏伟.图像的分形维数计算方法及其应 用[J].江苏理工大学学报,2001,22(6):92-95.
- [4] 彭瑞东,谢和平,翰杨.二维数字图像分形维数的计 算方法[J].中国矿业大学学报,2004,33(1):19-24.
- [5] 郭飞,徐绍辉,刘建立.土壤样本分形几何特征的图像分析方法[J].土壤学报,2005,42(1):24-28.
- [6] 晏磊,罗立,张雪虎.真实孔径雷达海洋图像的分形

特征分析[J].电波科学学报,2007,22(4):604-609.

- [7] 李国宾,孟 歆,关德林,等.基于小波和分形提取磨粒
 图像特征参数的研究[J].内燃机学报,2006,24(5):
 476-479.
- [8] 李军伟,朱振福,贾京成,等.基于分形技术的目标检测算法研究[J].红外与激光工程,2003,32(5):469-471.
- [9] 夏政伟,赵健,蒲小勤,等.多重分形应用于图像局部 分割的研究[J].计算机工程与应用,2009,45(27):191-192.
- [10] Peyton L,Gantzer C J,Anderson S H,et al.Fraetal dimension to describe soil macropore structure using X ray computer tomography[J].Water Resource Research, 1994,30(3):691-700.
- [11] Pachepsky Y A,Timlin D,Varallyay G.Artificial neural networks to estimate soil water retention from easily measurable data [J]. Soil Science Society of America Journal,1996,60:727-733.
- [12] 张济忠.分形[M].北京:清华大学出版社,1995.
- [13] Benell G,Garzelli A.Oil-spills detection in SAR imagesby fractal dimension estimation[C]. Proc. IEEE IGARSS'99,1999,218-220.
- [14] Berizzi F,Dell'Acqua F,Gamba P,et al. On the fractal behavior of SAR images of ocean sea surface[C]. ProC.IEEE IGARSS'01.2001,4,1729-1731.
- [15] 刘远仲,曾黄麟,樊玉梅.基于 Canny 算子的白酒显 微图像边缘提取[J].四川理工学院学报:自然科学 版,2011,24(3):341-344.
- [16] 李华强,喻擎苍,方 玫.Canny 算子中 Otsu 阈值的运用[J].计算机工程与设计,2008,5(29):2297-2298.

Detection of Distribution Dimension of the Earth-rock Aggregate Based on Digital Image Process

DU Zhao-bin^a, WANG Jian-xun^b, PING Gen-jian^a

(a. Department of Software Engineering; b. Department of Mechanical Engineering, Zhengzhou Technical College, Zhengzhou 450121, China)

Abstract: Some parameters including distribution fractal dimension of coarse grain and coarse grain boundary contour line are used as a new research method on microstructure of earth-rock aggregate by engineering technicians, which can explain the characteristics of mechanical behavior of earth-rock aggregate. The parameters of distribution fractal dimension can also be classification basis for engineering of earth-rock aggregate. Now technicians can only calculate grain-size fractal dimension by sieve analysis in manual operation way to research on the microstructure of earth-rock aggregate, which restricts the technicians' further research for its great labor intensity and its inconvenient operation. In this paper the detection of distribution fractal dimension of earth-rock aggregate base on digital image process is put forward. This method is simple and practical. It can decrease labor intensity and enriched the research method of microstructure of earth-rock aggregate for technicians.

Key words: digital imageprocess; earth-rock aggregate; fractal dimension