文章编号: 1673-1549(2010) 01-0065-04

HZ8160大孔树脂吸附金丝桃素的热力学研究

张利1, 刘春新2, 冯喜文2, 何勇1, 何林芯1

(1.四川理工学院化学与制药工程学院,四川 自贡 643000, 2四川理工学院材料与化学工程学院,四川 自贡 643000)

摘 要:研究了 HZ8160大 孔树脂吸附金丝桃素的热力学特性。研究表明,其等温吸附规律符合 Freundlich 等温方程, n> 1,吸附焓变 △H < 0,吸附自 由能变 △G < 0,吸附熵变 △ S < 0,表明金丝桃素在 HZ8160大 孔树脂上的吸附为放热、自发的和优惠吸附过程,属于物理吸附。

关键词: 金丝桃素; 大 孔树脂; 热力学

中图分类号: 0647.3

贯叶连翘 (Hypericum perforatum Linn)为藤黄科 (Garcinia) 金 丝桃属 (Hypericaceae) 植物, 多 年 生草 本^[1], 在欧洲及美国被称为圣约翰草 (St John'swort)。 贯叶连翘已经成为全世界最畅销的草药之一, 且被作为 草药收载在美国药典中。其主要成分金丝桃素具有多 种药理活性, 目前已经成为国内外研究开发的热点。目 前金丝桃素的制备方法主要是使用有机溶剂从贯叶连 翘中提取, 但由于金丝桃素的特殊理化性质使得所得产 品纯度和收率过低, 并且溶剂消耗量较大。树脂吸附法 具有溶剂损耗小, 操作简便及可重复使用等优点。较多 文献^[2]报道了应用大孔树脂对金丝桃素进行分离纯化 的应用研究, 而对于其吸附金丝桃素的基础理论方面则 未见报道。本文对 HZ8160树脂吸附金丝桃素的热力 学特性进行了研究, 为大孔树脂分离纯化金丝桃素的工 业化放大生产提供了一定的理论依据。

1 材料与方法

1.1 仪器及主要试剂

仪器: 721E型可见分光光度计 (上海菁华科技仪器 有限公司); SHZ-A型恒温水浴振荡器 (上海贺德实验 设备厂); 3200H型超声波清洗器 (南京电子计量有限 公司); MP2001电子天平 (上海恒平科学仪器有限公 司); 万分之一克电子天平 (日本岛津公司)。

主要试剂: HZ8160大孔树脂 (上海华震科技有限公

文献标识码: A

司,其主要性质为:聚合单体为苯乙烯,弱极性,粒度范 围:0.125mm - 0.315mm,湿真密度:1.0g/mL-1.10g/ mL);贯叶连翘提取物粗品(含量 0.33%,购于西安三 江生物工程有限公司);金丝桃素标准品(含量 85%, Sigma公司);无水乙醇(成都科龙化工试剂厂)。

1.2 样品溶液的制备

取 30g贯叶连翘粗品, 加入 35倍原料量的 80% 乙醇 溶液, 在 40℃下超声振荡溶解 1. 5h^[3], 离心后过滤备用。 1.3 标准曲线的绘制

采用分光光度法在 590nm 处测定金丝桃素对照品 溶液,以对照品浓度(C)及吸光度(A)绘制标准曲线。 得回归方程为: C=0.01275A - 0.00018,回归因子 R² = 0.9997,线性范围: 0.00143mg/mL - 0.0105mg/mL。 1.4 树脂的预处理^[4]

取一定量树脂用 95% 乙醇浸泡 24h后倾去上浮物,再使用 95% 乙醇继续洗涤,洗出液加蒸馏水(体积比为 1:5)以不浑浊为止,用蒸馏水洗净乙醇后加入 3%的盐酸浸泡,12h后用水洗至中性,再加入 3% NaOH 溶液浸泡,12h后同样用水洗涤至中性。最后放置于干燥箱中,干燥至恒重待用。

1.5 吸附等温线的测定

准确称量干树脂 1g置于具塞锥形瓶中,加入 100mL配制好的浓度约为 0.0015mg/mL、0.0030mg/ mL、0.0045mg/mL、0.0060mg/mL、0.0075mg/mL的金丝

收稿日期: 2009-11-13

基金项目:四川省教育厅资助项目 (07ZC035)

①作者简介2附1利(1970日,現a問引補為乃u副教授主要公事药的命成系系参药物提取、分离和纯化充更的想定。http://www.cnki.net

桃素溶液,分别在 298K, 313K, 333K, (100 r/m in)下恒温 振荡至吸附平衡。测定吸光度并计算平衡吸附量 Q e 计算公式为:

$$Q_e = \frac{V \times (C_0 - C_e)}{W}$$

式中:

- C_0 一金丝桃素的起始质量浓度, mg/mI; Ce一为金丝桃素的平衡质量浓度, mg/mI; Qe一为树脂的平衡质量吸附量, mg/g V一溶液的总体积, m] W 一干树脂质量, g
- 2 结果与讨论

2.1 吸附等温线

分别在 298K、313K、333K 下测定树脂对金丝桃素 的吸附等温线 (图 1)。

图 1 不同温度下的等温吸附曲线

2.2 等温吸附模型

文献报道中常用的等温吸附模型有如下几种: Langmuir模型

$$Q = \frac{Q_m K}{M}$$

$$Z_e = 1 + K_L C$$

 $_{L}C_{e}$

Freundlich 模型^[5]

$$Q_e = K_F C_e$$

Temkin模型^[6]

$$Q_e = \frac{RT}{b} \ln(K_T C_e)$$

式中:

 Q_e 一为树脂的平衡质量吸附量, mg/g

Ce一为金丝桃素的平衡质量浓度, m g/mL;

Qm 一为树脂的饱和质量吸附量, mg/g

其余为等温吸附特征常数。

使用 Origin 分别对三种模型进行线性拟合, 所得结

金丝桃素的等温吸附符合这三种模型 ($R^2 > 0.97$), 但 是 Langn uir模型和 Freundlich模型更符合 ($R^2 > 0.99$) 金丝桃素的吸附过程, 其中以 Freundlich模型为优。该 模型中的 K_F为平衡吸附常数, 反映吸附量的相对大小; n为特征常数, 表明吸附剂表面的不均匀性和吸附强度 的相对大小。由表 3可知, 随着温度的上升, K_F 值逐渐 减小, 表明树脂对金丝桃素的吸附过程属于放热过程, 温度的升高不利于吸附; 而 n值均大于 1, 表明树脂对 金丝桃素的吸附为优惠吸附 (即吸附容易进行)。 Freundlich模型拟合曲线图如图 2所示。

表 1 Langmuir方程在不同温度下的拟合结果

模型参数及相关系数			
温度 /K	$Q_m /m g^{\bullet} g^{-1}$	$K_L / L^{\bullet} g^{-1}$	\mathbb{R}^2
298	0.9412	95. 51	0. 9955
313	0.8423	69. 50	0. 9965
333	0.7775	66. 43	0. 9915

表 2 Freund lich方程在不同温度下的拟合结果

模型参数及相关系数

温度 /K	n	K _F	\mathbf{R}^{2}
298	1.247	21.82	0. 9985
313	1.182	19. 43	0. 9983
333	1. 163	18.74	0. 9953

表 3 Temkin方程在不同温度下的拟合结果

模型参数及相关系数			
温度 /K	$K_T / L^{\bullet} m g^{-1}$	B_1	\mathbb{R}^2
298	1806. 553	0. 1161	0. 9816
313	1709. 565	0. 1053	0. 9756
333	1645. 356	0. 0864	0. 9815

图 2 不同温度下的 Freund Lich模型 等温吸附曲线拟合图

- 2.3 吸附热力学性质
- 2.3.1 吸附焓变△H

吸附过程的等量吸附焓变 \triangle H 可以根据 V an't H off 方程^[7]进行计算, 公式为:

$$\ln C_e = \frac{\Delta H}{RT} - \ln K_0$$

果见表。1-表3、从三个表中可以看出 H Z8160树脂对。式中, Ce是温度 T下的平衡溶液中吸附质的浓度

(mmol/mL), R为理想气体常数(8.314J/(mol•K)), T 为绝对温度 (K), K_0 为常数, △ H 是等量吸附焓变 (kJ/m ol)。通过 $lnCe对 T^{-1}$ 作图 (图 3), 由图 3中直线的斜 率计算可得△Ⅱ 计算结果列于表 4

图 3 HZ8160树脂吸附等容线

表 4 不同初始浓度下的吸附焓变和吸附自由能变

C ₀	ightarrow H		△ G(kJ/mo ļ)
(mg/ml)	(k J <i>I</i> m ol)	298K	313 K	333 K
0. 0015	- 7.927			
0. 0030	- 7.099			
0. 0045	- 6.371	- 3. 090	- 3. 076	- 3. 220
0. 0060	- 6.083			
0. 0075	- 6.044	_		

2.3.2 吸附自由能变△G

吸附自由能变 △ G 通过 G bbs方程^[8-10] 从等温线 推导,最后得到:

$$\Delta G = -RT \int_{0}^{x} \frac{Qe}{X} dX$$

式中, X为平衡溶液中吸附质的摩尔分数, Oe表示树脂 的摩尔平衡吸附量 (mmol/g), R 为理想 气体常数 (8.314J/(mol•K)), 计算时可用合适的吸附等温方程 代入。根据前面热力学拟合结果,选用 Freundlich吸附 等温方程式代入计算, 当浓度低时, Oe与△G无关, 进 而可以推导得出单位吸附自由能变:

 $\Delta G = - nRT$

式中, n为 Freundlich 方程中的参数, 计算结果见表 4。 2.3.3 吸附熵变△S

吸附过程的熵变 $\triangle S$ 可由前面计算出的吸附焓变 △H和吸附自由能变 △G根据 Gbbs - Hehnoltz方 程^[810]计算。

结果见表 5.

表 5 不同初始浓度下的吸附熵变

C ₀		$ \ \ \Delta \ \ S(\ \ J/mo \ \ K) $	
$(mg{\it I}\!mL)$	298 K	313 K	333 K
0. 0015	- 16.232	- 15. 498	- 14. 135
0. 0030	- 13.456	- 12. 854	- 11. 650
0. 0045	- 11.011	- 10. 527	- 9. 463
0. 0060	- 10.044	- 9. 606	- 8. 597
0. 0075	- 9.913	- 9. 481	- 8. 480

表 4中.吸附焓变 △ H < 0 表明 HZ8160 树脂对金 丝桃素的吸附过程是放热的,如果没有其它因素的干 扰,温度对吸附的影响呈负效应,即吸附量随温度的升 高而减小,降低温度有利于吸附,这与前面等温吸附拟 合所得参数 K_{F} 值变化反映的结果一致。吸附焓变 \triangle H 的绝对值都小于 40kJ/mol表明树脂对金丝桃素的吸附 有明显的物理吸附特性,较低的吸附焓变△H,说明该 树脂容易脱附再生。

由表 4可知:吸附自由能变 $\triangle G < 0$ 说明金丝桃素 在 HZ8160树脂上的吸附是自发进行的,并且其绝对值 都小于 20 kJ/m ol 说明吸附属于物理吸附范畴, 与前面 的吸附焓变数据相符合。△G值随温度和吸附水平的 变化基本保持或者变化很小,进一步证实了吸附过程的 物理特征及在较低的吸附量下熵的补偿作用[11]。

表 5中吸附熵变△S均为负值,这可能是因为金丝 桃素分子的运动在溶液中较吸附在树脂表面上更为自 由,所以吸附后熵减小。随着温度的升高,吸附熵变△S 的绝对值减小,这可能与树脂表面的不均匀性及金丝桃 素在树脂表面的分布及其局域运动有密切关系^[12]。

3 结束语

(1)金丝桃素在 HZ8160大孔吸附树脂上的等温吸 附规律可以用 Freundlich吸附等温方程式来表示,属于 表面不均一性的单分子层吸附. n> 1.表明该树脂对金 丝桃素的吸附为优惠吸附。

(2)热力学参数吸附焓变△H < 0 吸附自由能变 △ G< 0 吸附熵变 △ S< 0 表明吸附过程为放热的自发 过程,属于物理吸附范畴。由于金丝桃素分子结构中有 多个酚羟基,在吸附时可形成氢键,因而吸附作用力主 要是氢键力,还有范德华力。

参考文献:

- [1] 中科院西北植物研究所. 秦岭植物志 [M]. 北京: 科学 出版社, 1998
- [2] 黄英,张迪清,何照范. 金丝桃素提取分离工艺的研究

 $\Delta S = \Delta H - \Delta G$ © 1994-2011 China Academic Journal Electronic Publishing Hotise. All rights reserved. http://www.cnki.net

- [3] 史丰华.贯叶连翘中有效成分的分离纯化工艺及其检测方法的研究[D].重庆:重庆大学,2005.
- [4] 汪茂田,谢培山,王忠东,等.天然有机化合物提取分 离与结构鉴定[M].北京:化学工业出版社,2004
- [5] Suen S Y. A comparison of Isotherm and kinetic models for binarysolute adsorption to affinitymembranes [J]. J Chem Technol Biotechnol 1996, (65): 249-257.
- [6] Kin Y, Kin C, Choi I et al Arsenic removal using mesoporous alum in a prepared via a temp lating method[J]. Environ Sci Technol 2004 (38): 924-931
- [7] Ana G L Sorption of antimony onto hydroxyapatite[J].
 Environment Science and Technology 2001, 35 (2): 3669-3675
- [8] 孙 磊, 王玉蓉, 李维峰. 大 孔吸附树脂吸附远志总皂苷 的吸附热力学和动力学研究 [J]. 北京中医药大学学

报, 2006, 29(11): 772-775.

- [9] 孔凡彬,徐瑞富,谢国红,等.两种大 孔树脂对水溶液 中克百威的吸附行为 [J]. 山西农业科学,2007,35
 (5):66-69
- [10] 张 磊, 徐环昕, 刘坐镇. HZ816大 孔树脂对番茄红素 的吸附特性研究 [J]. 现代食品科技, 2009, 25(3): 232-236
- [11] Bell J P, Tsezos M. Removal of hazardous organic pollutants by biomass adsorption [J]. J W ater Pollut Control Fed 1987, 59, 191.
- [12] Kunio E, Fusheng I, Yosh hiro A, et al Pore distribution effect of activated carbon in adsobing organic micropollutants from natural water[J]. Wat Res 2001, 35(1): 167.

Them odynam ical Research on Adsorption of Hypericin on Macroporous HZ8160 Resin

ZHANG L¹, LIU Chun x in², FENG X iw en², HE Yong¹, HE Ling-x ing¹

(1 School of Chemistry and Pharmacentical Engineering Sichuan University of Science & Engineering Zigong 643000, China

2 School of Material and Chemical Engineering Sichuan University of Science & Engineering Zigong 643000, China)

Abstract The adsorption them odynamics of hyperic in in solution was studied. Studies indicate that hyperic in adsorption onto HZ8160 res in conforms to Freundlich adsorption isotherm equation, with n > 1, $\triangle H < 0$, $\triangle G < 0$ and $\triangle S < 0$, which show ed that the adsorption process of hyperic in on macroporous resin HZ8160 was a spontaneous, exotherm ic and favourable process, which belongs to the physical adsorption

Key words hypericin, macroporous resin, the modynamics

(上接第 64页)

Analysis of O rganic Chlorinated Pesticides in Fish by M icrowave Extraction / Capillary GC

ZHENG Lin^{l} , SHIZ em ing^l, LI Jia-xu an^l, LN Q ing-m el^{l,2}, NI Shi-jun^l

(1. Department of Geochem istry, Chengdu University of Technology, Chengdu 610051, China

2 No. 294 Geobgical Party of Fujian Provincial Nuclear Industry, Fuzhou 350013, China)

Abstract The aim was to explore the quick, exact and cheap method for detection on fish The organic chlorinated pesticides (HCHs and DDTs) in fish were extracted by microw ave extraction and an alyzed by capillary GC with PECD. The extraction recovery was 89.3% -104.2%, and RSD was less than 10%. A couracy and precision which were better accorded to the requirements of analysis of pesticide residues Explored the content characteristics of organoch brine in kinds of fish The results showed that flesh-eat fish > on nivorous fish > herbivorous fish Obviously, organoch brine pesticides enriched in the organisms body with the food chain

Key words microwave extraction, GC-ECD; fish, organoch lorine