文章编号: 1673-1549(2011) 01-0113-05

T iO₂ 电子结构的第一性原理计算

胡燕飞^{1,2}, 袁玉全¹

(1.四川理工学院理学院,四川 自贡 643000,2四川大学原子与分子物理研究所,成都 610065)

摘 要:利用基于密度泛函理论的赝势方法对锐钛矿、金红石和萤石结构的 TO₂ 进行模拟,研究 了锐钛矿结构、金红石结构和萤石结构 TO₂ 的基本性质参数,包括晶格常数、体弹模量 B₀和体弹模量 对压强的一阶导数 B'₀₀ 对模型进行结构优化后,应用第一性原理方法比较分析了三种晶型 TO₂ 的电 子结构,研究了其能带和态密度的分布情况,得出 TO₂ 的价带主要是由 O的 2p态贡献的,导带主要 是由 Ti的 3d态贡献的。得到三种晶型的禁带宽度,其中萤石结构的禁带宽度远小于金红石结构和 锐钛矿结构,可以预计萤石 TO₂光谱的吸收范围扩大,光催化性能会相应有所提高。

关键词: T O₂; 密度泛函理论; 能带结构; 态密度 中图分类号: 0641; 0649

二氧化钛 (TO_2) 材料具有较宽的禁带宽度、催化活 性高、化学稳定性好、光催化活性高、不易受光侵蚀和廉 价等优势,在光催化、光电转换和复合涂料等领域有着 广泛的应用。常温常压下 TO_2 存在三种同质异构体:金 红石结构 (rutile)、锐钛矿结构 (anatase)和板钛矿结构 (brook ite)。目前国内外的研究主要是针对金红石和锐 钛矿这两种结构展开,因为金红石和锐钛矿型 TO_2 的性 能最稳定,而板钛矿型 TO_2 由于稳定性差且结构相对复 杂,很少用于商用,因此研究和实际应用均较少^[18]。

随着温度和玉强的增加, 金红石结构 T O_2 将经历一系列的相变过程。许多高压实验^[910]表明当压强接近 60 GPa 时, T O_2 将转变成一种立方相结构, 但不能确定这种相是萤 石结构还是其它高压相。最近, K in, Mattesini和 Swany等 人^[21-12]分别报道了对 T O_2 材料的最新研究成果, 通过 X 衍射实验,在 48 GPa的高压和 1 900-2 100 K 的高温条件 下, T O_2 会从金红石结构转变为立方相结构, K in D Y 等 人^[2]通过理论分析证实这种结构为立方相的萤石结构。他 们发现这种立方相萤石 (fhorite)结构 T O_2 材料在高压 条件下可稳定存在, 且其体积弹性模量等力学性质不同 于常见的金红石或锐钛矿结构 T O_2 , 并预言该种结构的 材料势必成为发展前景广阔的新的超硬材料^[13]。

在本文中,我们利用平面波赝势密度泛函理论研究 了 TO₂的锐钛矿结构、金红石结构和萤石结构的基本性 文献标识码: A

质参数,包括晶格常数、体弹模量 B_0 和体弹模量对压强的一阶导数 B'_{00} 进行结构优化后,应用第一性原理方法比较分析了锐钛矿相 T Ω_{∞} 金红石相 T Ω_2 和萤石结构 T Ω_2 的电子结构,研究了其能带和态密度的分布情况。

1 理论计算方法

本文的计算工作采用基于密度泛函理论 (density functional theory DFT)结合平面波赝势方法的 CA STEP (Cambridge serial total energy package)^[14]软件包完成。 文中电子与电子间相互作用中的交换关联效应通过广 义梯度近似 (GGA)的 PW 91^[1516]的计算方案来处理,它 是目前较为准确的电子结构计算的理论方法。电子波 函数通过平面波基矢组扩展,为尽量减少平面波基矢个 数,本文采用了超软赝势 (ultrasoft pseudopotentials)^[1718] 来描述离子实与价电子之间的相互作用势,并选取 T i O 的价电子组态分别为: $3s^2 3p^6 3d^2 4s^2$ 和 $2s^2 2p^4$ 。计算中截 断能 E_{cut} 设为 700 eV, 自洽精度设为 1. 0 × 10⁻⁶ eV /atom, 在布里渊区设置的 k – point网格^[19-30]对于锐钛矿、金红 石和萤石分别取 7 × 7 × 9 5 × 5 × 6和 8 × 8 × 8 这足 够保证总能量能够得到很好的收敛, 使之达到比较高的 计算精度。

2 计算结果和讨论

建立模型时,所需基础结构参数从相关文献中获

收稿日期: 2010-10-09

(作為简介:胡燕飞(1982)、女四川自贡人, 讲师, 博士生, 主要从事新材料的设计与合成方面的研究。 〇門994-2011 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnki.net 得,以保证准确性和可比性。由广义梯度近似 (GGA)的 方法进行结构优化,优化后的结构参数与其它理论计 算^[15,7,12-13,21-3]和实验数据^[11,2732]相比见表 1。

为了确定 TO_2 体结构性质,我们计算了晶体体积与 系统总能之间的关系,并用 Birch-Mumaghan Equation of State(EOS)^[33]状态方程进行拟合,其关系式如下:

$$\Delta E(V) = E - E_0 = B_0 V_0 \left[\frac{V_n}{B'_0} + \frac{1}{1 - B'_0} + \frac{V_n^{+B'_0}}{B'_0(B'_0 - 1)} \right] \quad (1)$$

其中, E_0 是零压下的静态能量, $V_n = V/V_0$ 是相对原胞体积, 压强和相对体积的关系如下:

$$P = -\frac{dE}{dV} = \frac{B_0}{B'_0} [V_n^{B'_0} - 1]$$
(2)

由状态方程拟合得到体弹模量 B_0 及其对压强的一阶导数 B_0 (表 1)。

表 1 7	「D。在零温零压下的晶格常数(Å)	、体弹模量 B。	(GPa).	体弹模量对压强的一阶导数 B	、帯隙
-------	-----------------	----	----------	--------	----------------	-----

	This work (GGA)	O ther C alculation s	E xperin ents
Rutile			
a / Å	4 626	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4. 594 ^v
c / Å	2 957	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. 599 ^v
B ₀ / GPa	222. 07	229 ^a , 239 $\pm 10^{\text{f}}$, 243 ⁱ , 215 $\pm 1^{\text{l}}$, 224 $\pm 8^{\text{n}}$, 216°, 242 ^p , 204 ^r , 249 ^s	216 ^v
B_0	4 355	4 736 ^d , 4 63 ^j , 5 35 \pm 0 16 ^l , 4 62 ^r , 4 98 ^s	6. 76 ^v
Band gap / eV	2 045	2. 0^{j} , 1. 98^{n} , 1. 78^{o} , 1. 88^{p}	3. 0 ^w
Anatase			
a / Å	3 796	3. 771 ^b , 3. 781 ^f , 3. 79 ⁱ , 3. 692 ^k , 3. 784 ^o , 3. 744 ^p , 3. 747 ^q , 3. 786 ^r , 3. 735 ^s	3. 783 ^u
c / Å	9 695	9. 570 ^b , 9. 735 ^f , 9. 51 ⁱ , 9. 471 ^k , 9. 515 ^o , 9. 497 ^p , 9. 334 ^q , 9. 737 ^r , 9. 534 ^s	9. 513 ^u
B_0 / GPa	201.82	$176^{\rm b},\ 202^{\rm f},\ 195^{\rm g},\ 194^{\rm i},\ 196^{\rm p},\ 187^{\rm q},\ 176^{\rm r},\ 199^{\rm s}$	243^{u} , 179 ± 2^{x}
B_0	4 365	2. 99 ^r	4^{u} , 4.5 ± 1.0^{x}
Band gap/ eV	2 082	2. 0^k , 2. 2^n , 2. 04^o , 2. 05^p , 2. 13^t	3. 2 ^y
F luorite			
a / Å	4 738	4. 689ª, 4. 794 ^f , 4. 748 ^g ,	4. 516 (P= 48GPa, T= 1900 – 2100K) 2
B ₀ / GPa	281.55	$269^{a}, 282^{i}$	$202 \pm 5(T = 300K)^{2}$
B_0	4 269	4. 41 ^h	1. 3 ± 1 (T = 300K) ^z
Band gap / eV	1.048	1. 06 ⁿ	

^aMS – Q Ref [1]; ^bMA R ef [1]; ^cGGA Ref [2]; ^dLDA R ef [3]; ^eLCAO – GGA R ef [4]; ^fLCAO – HF R ef [4]; ^gLCAO – LDA R ef [4]; ^bPBE R ef [5]; ^bLDA R ef [7]; ^jLDA R ef [21]; ^kLDA R ef [22]; ^bGGA R ef [12]; ^mB 3LYP R ef [12]; ^mLDA R ef [13]; ^oOL-CAO – LDA R ef [23]; ^pTM R ef [24]; ^qT eter R ef [24]; ^rPBE R ef [25]; ^sLDA R ef [25]; ^sFP – LA PW – GGA R ef [26]; ^wX – ray R ef [27]; ^vT = 298K R ef [28]; ^wR ef [29, 30]; ^xR ef [31]; ^yR ef [32]; ^zR ef [11]

计算得到的锐钛矿相 T O2 晶体沿布里渊区对称方 向的能带结构如图 1所示(费米能级被选在能量零点)。 由图 1可知, 价带顶位于 X 点, 导带底位于 G 点, 最小带 隙为从价带顶的 X 点到导带底的 G 点, 即锐钛矿相 T O, 属于间接带隙半导体。计算得到最小带隙值 E_x为 2 082 eV, 明显小于实验值 3.2 eV^[32], 但与其它理论计 算值相符(Asahi等人^[2]的计算结果为 2.0 eV, Shang-DiM o等人^[23]的计算结果为 2.04 eV, 见表 1), 出现这种 情况是由于计算方法本身原因所造成的. 对于广义梯度 近似 (GGA) 计算所造成的结果能带减小, 国际上已经有 讨论,其不能用来对物质进行精确的绝对能量计算。目 前半导体带隙的模拟计算结果普遍与实验结果存在较 大的偏差,这主要是由于广义梯度近似 (GGA)本身存在 E 计算值偏低的普遍性问题。由于广义梯度近似只记入 了某处附近的电荷密度对交换关联能的影响,比如只考 虑到密度的一级梯度对交换关联能的影响,不能完全描 述真实的多电子相互作用能,因此会低估带隙^[34]。

图 1 锐钛矿结构 TD₂的能带结构图

电子结构进行直观定性的分析。为了进一步了解 TD₂ 的微观结构,还计算了 TO₂ 的总态密度、TO₂ 的分波态 密度、T i的分波态密度和 O的分波态密度。图 2为锐钛 矿相 TO₂ 沿布里渊区高对称点方向价带和导带的态密 度 (DOS) (取费米能级为能级零点),因为影响固体的物 理性质主要是费米能级附近的电子结构,所以本文计算

◎作为能带结构的a Acqui视化结果。态密度完全能对blishing House. All rights reserved. http://www.cnki.net

态密度分布曲线可以看出, 能量空间中电子态主要分布 成三个区域, 分别为: -18.5 eV - 15 eV = -5.6 eV - 0 eV 组成的价带, 以及 1.2 eV - 8 eV 之间组成的导带。锐钛矿相 T O₂ 的总态密度图也很好地证明了图 2所示的 T O₂ 能带结构特征。从分波态密度图可以看出, 费米能级附近的价带 (VB)由 O 2p轨道和 T i 3d轨道组成,占有能量宽度约为 5.03 eV; 导带 (CB)主要由 T Bd轨道组成。由于一个 T⁴⁺ 被六个 O²⁻ 包围, 构成 T O₆ 八面 $体, 根据晶体场理论, d轨道分裂成低能的 <math>t_{2e}$ (d_{2s} , $d_{x^2-y^2}$)态两部分, 这使得费米能 附近的导带被分裂成上、下两部分, 价带和上导带主要 由 O 2p和 T i e_g 态组成, 而下导带主要由 O 2p和 T i t_{2e} 态 构成。从图 2中可以看出, O 2p和 T i 3d在导带和价带 区域都存在杂化, 这表明在锐钛矿中 T i和 O 原子间存 在强烈的相互作用。

图 2 锐钛矿结构 TD₂ 的态密度图

在优化后的晶胞结构的基础上, 计算得到的金红石 相 T O₂ 的能带结构如图 3所示, 取费米能级为能量零 点。由图 3可知, 与锐钛矿相 TO₂ 能带不同, 金红石 T O₂ 的导带最低点和价带最高点均在 G 点, 属直接带隙 半导体, 其禁带宽度值为 2.045 eV, 比锐钛矿 T O₂ 计算 得到的禁带宽度小, 和其它理论计算^[13, 21, 25:4] 的结果比 较接近, 但远小于实验值 3.0 eV^[29:30], 出现这种情况是 由于计算方法本身原因造成的, 对于计算所造成的带隙 宽度减小, 国际上的研究者已有研究^[33], 这是由于受泛 函理论本身的影响: 在密度泛函理论中, 求解 Kohn – Sham 方程没有考虑体系的激发态, 使得价带顶以上的 能级位置偏低, 而价带及以下的能级与实验一致, 这就 导致基本带隙宽度比实验值一般小 30% – 50%, 但是作 为一种有效,科学的近似方法, 计算所得到的相对值还是 非常准确的, 对能带和电子结构分析仍具有参考价值。

上面的带结构特征在 DOS图中也得到了证实。从 金红石相 TO₂的态密度曲线 (图 4所示)可以看出,在 费米能级附近,价带顶 (-5.8 eV - 0.5 eV)由 O 2p态和 T i 3d态组成,其中 O 2p态起决定作用。对于导带底部 分 (1, 6, 4) = 0.7, 8, 4V),主要来源于 T i 3d态的贡献,还有

图 3 金红石相 TD2 的能带结构图

少量的 O 2p态。Leg L 等^[30] 报道了价带两个主峰之间 有 1.9 eV 的能量间隔,这一双峰结构在金红石的 DOS 图中得到了证实。这种双峰结构源于 O 2p反键态和成 键态。相似的双峰特征在导带中也存在。两不同的导 带部分分别占有宽度约为 3.0 eV 和 3.1 eV。 G lassford Chelkow sk^[21]和 Sorantin, Schwar2^{4]}将这一特征归因于 T i 3d态在八面体晶体场下的分裂。他们计算得到的导带 宽度分别为 2.9 eV、3.3 eV 和 2.6 eV、2.9 eV。分态密度 也表明 O 2p和 T i 3d在导带和价带区域都存在杂化,这表 明在金红石中 T i和 O原子间存在强烈的相互作用。

图 4 金红石相 TD₂ 的态密度图

在优化后的晶胞结构的基础上, 计算萤石结构 T O_2 的能带结构、总态密度和分波态密度。 O 原子核外价电子 ($2s^2 p^4$)和 T i原子核外价电子 ($3s^2 3p^6 3d^2 4s^2$)为主要研究对象。沿布里渊区高对称点方向的能带结构如图 5所示, 费米能被选为能量零点, 分析计算结果, 发现价带顶位于 X 点, 导带底位于 G 点, 最小带隙为从价带顶的 X 点到导带底的 G 点, 即萤石相 T O_2 属于间接带隙半导体。计算得到最小带隙值 E_s 为 1.048 eV, 与关丽等人的计算结果 1.06 eV^[13]吻合得很好。遗憾的是, 至今还没有可用的萤石结构 T O_2 的禁带宽度实验值。我们可以根据锐钛矿和金红石 T O_2 的理论计算值与实验值的差值运用剪刀算符对萤石 T O_2 的理论计算值进行修正预测实验值。众所周知, 金红石和锐钛矿均是宽带隙

半导体,只能吸收太阳光谱中很少的一部分紫外光,利 用率低。因此需要通过贵金属表明沉积,金属如稀土 元素、非金属离子如氮原子或者双元素的掺杂等手段, 来降低禁带宽度,扩展 TO₂ 的光谱响应范围,提高其 光催化性能。本文理论计算的萤石 TO₂ 的禁带宽度 值均远小于金红石和锐钛矿的理论计算值,因此可以 预见萤石 TO₂光谱的吸收范围扩大,光催化性能会相 应有所提高。

图 5 萤石结构 TD₂ 的能带结构图

图 6为萤石结构 TO₂ 的态密度和分态密度图, 从图 6中的态密度分布曲线可以看出, 能量空间中电子态主 要分布成三个区域, 分别为: -16.2 eV - -14.2 eV与 -2.5 eV - 0.1 eV 组成的价带, 以及 0.7 eV -11.5 eV组成的导带。萤石相 TO₂ 的总态密度图也很好地证明 了图 3所示的 TO₂ 能带结构特征。结合分态密度图可 以得到, 在费米能级附近, 价带 (VB)由 O 2p轨道和 Ti 3.4轨道组成, 导带 (CB)主要由 Ti 3.4轨道组成。

图 6 萤石结构 TD₂ 的态密度图

3 结 论

利用基于密度泛函理论的第一性原理方法研究了 T O_2 的三种结构, 即锐钛矿结构、金红石结构和萤石结 构的基本性质, 包括晶格常数、体弹模量 B_0 和体弹模量 对压强的一阶导数 B'_0 , 计算结果与实验值和其它理论 计算结果符合得很好。进行结构优化后, 应用第一性原 理方法比较分析了锐钛矿相 T O_2 、金红石相 T O_2 和萤石 结构 TO₂ 的电子结构, 研究了其能带和态密度的分布情况。其结果显示, 锐钛矿相 TO₂ 是间接带隙半导体, 其 禁带宽度为 2.082 eV; 金红石相 TO₂ 是直接带隙半导体, 其禁带宽度为 2.045 eV; 萤石结构 TO₂ 是间接带隙 半导体, 其禁带宽度为 1.048 eV, 均小于实验值, 但与其 他理论计算相符合。萤石 TO₂ 的禁带宽度值远小于金 红石和锐钛矿的理论计算值, 可以预见萤石 TO₂光谱的 吸收范围扩大, 光催化性能会相应有所提高。结合能带 和态密度图可以看出, TO₂ 的价带主要是由 O 的 2p态 贡献的, 导带主要是由 T 的 3d态贡献的。

参 考 文 献:

- [1] SwamyV, Gale JD, DubrovinskyLS A ton istic sinulation of the crystal structures and bulk moduli of TO_2 polymorphs[J]. J Phys Chem Solids, 2001, 62 887-895.
- [2] K in D Y, A hneida J S de, Koci I, et al Dynamical stability of the hardest known oxide and the cubic solar material T O₂ [J]. Appl Phys Lett, 2007, 90 171903
- [3] Wang Yan-Ju, Chang Jing Tan LiNa et al Elastic properties of TO₂ rutile at high temperature[J]. Chin. Phys Lett, 2007, 24(9): 2646
- [4] Joseph M uscat, Sw any V arghese, N icholas M H arrison F irst-principles calculations of the phase stability of T O_2 [J]. Phys Rev. B, 2002, 65 224112
- [5] Koci I, Kin D Y, A heida J S de et al M echanical stability of T O₂ polymorphs under pressure ab initio calculations [J]. J Phys: Condens Matter, 2008, 20 345218
- [6] Keith M G, James R C. Optical properties of titan ium dioxide in the rutile structure [J]. Phys Rev. B., 1992, 45(7): 3874-3877.
- [7] Dewhurst J K, Low ther J E. H igh-pressure structural phases of titan ium dioxide[J]. Phys Rev B., 1996, 54(6): R 3673-R 3675.
- [8] Zhang Yuhong W eidenkaf Anke f Reller Am in Mesoporous structure and phase transition of nanocrystalline T O₂ [J]. M ater Lett, 2002, 54 375-381.
- [9] Ken Lagareç, Serge Desgreniers Raman study of single crystal anatase T O₂up to 70 GPa[J]. Solid State Commun., 1995, 94(7): 519-524
- [10] Syono Y, Kusab K, K kuchi M, et al Geophys J. Monogr, 1987, 39 385.
- [11] MattesiniM, Ahneida JS de, Dubrovinsky L, et al High-pressure and high-temperature synthesis of the cubic TO₂ polymorph[J]. Phys Rev. B., 2004, 70 212101.
- [12] Swam y Varghese, Barry C Muddle Ultrastiff cubic T O₂ identified via first principles calculations[J]. Phys Rev. Lett, 2007, 98(3): 035502.
- [13] 关丽, 刘保亭, 李 旭, 等. 萤石结构 TO₂ 的电子结构和光学性质 [J]. Acta Physica Sinica, 2008, 57

理方法比较分析了锐钛矿相 T O., 金红石相 T O. 和萤石 (1): 482-487. ◎ 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

117

- [14] SegallM D, Lindan P J D, ProbertM J et al Firstprinciples simulation ideas, illustrations and the CA STEP code[J]. J Phys Condens M atter, 2002, 14 2717.
- [15] Perdew J.P., Chevary J.A., Vosko S.H., et al. A tom ş moleculeş solidş and surfaces Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B., 1992, 46: 6671-6687.
- [16] Perdew JP, Burke K, Ernzenhof M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868
- [17] Troullier N, Martins J L Efficient pseudopotentials for plane-wave calculations [J]. Phys Rev. B., 1991, 43 1993-2006
- [18] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys Rev B., 1990, 40: 7892-789.
- [19] James D P, Hendrk J M. "Special points for Brillou in-zone integrations" — a reply[J]. Phys Rev B, 1977, 16(4): 1748-1749.
- [20] Hendrk JM, Janes D P. Special points for Brillouin-zone integrations[J]. Phys Rev B., 1976, 13(12): 5188-5192.
- [21] Glassford K M, Chelikowsky J R. Structural and electronic properties of titanium dioxide[J]. Phys Rev. B., 1992, 46(3): 1284-1298
- [22] Asahi R, Taga Y, MannstadtW, et al Electronic and optical properties of an atase T O₂ [J]. Phys Rev. B., 2000, 61(11): 7459.
- [23] Mo S D, Ching W Y. Electronic and optical properties of three phases of titan im dioxide nutile, anatase, and brookite [J]. Phys Rev. B., 1995, 51: 13023-13032.
- [24] M ikam iM, N akam ura S, K itao O, et al First-principles study of titanium dioxide rutile and anatase [J]. J Appl Phys, 2000, 39 L847-L850
- [25] LazzeriM, Vittadini A, Selbni A. Structure and energetics of stoich immetric T iO₂ an atase surfaces[J].

Phys Rev. B, 2001, 63 155409.

- [26] Chen Q, Cao H H. Ab initio calculations of electronic structure of an atase T O₂ [J]. Chin Phys Soc, 2004, 13 2121-2125
- [27] Swamy V, Dubrovinsky L S, Dubrovinska a N A, et al Compression behavior of nanocrystalline anatase T D₂ [J]. Solid State Commun, 2003, 125 111-115
- [28] Abrahams S C, Bernstein J L Rutile normal probability plot analysis and accurate measurement of crystal structure [J]. J Chem. Phys., 1971, 55 3206-3211.
- [29] Pascual J, Cam assel J M athieu H. Resolved quadrupolar transition in T O₂ [J]. Phys Rev Lett, 1977, 39, 1490-1493
- [30] Sorantin P J Schwarz K. Chem ical bonding in utiletype compounds[J]. Inorg Chem., 1992, 31: 567-576
- [31] Arlt T, BernejoM, Blanco M A, et al High-pressure polymorphs of an atase TiO₂ [J]. Phys Rev B., 2000, 61: 14414
- [32] Tang H, Berger H, Schm il P E, et al Photolum inescence in TO₂ anatase single crystals [J]. Solid State Commun, 1993, 847-850
- [33] Birch F. Finite elastic strain of cubic crystals[J]. Phys Rev., 1947, 71: 809-824
- [34] 谢希德,陆栋.固体能带理论[M].上海:复旦大 学出版社,1998
- [35] Asahi R, Morikawa T, Ohwak i T, et al Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293-269.
- [36] Leg L, Pollak R A, M cfeelg F R, et al. Total valenceband densities of states of III-V and V -VI compounds from x-rag photoen ission spectroscpy[J]. Phgs Rev. B., 1974(9): 600-621.

First-principles Calculations for Electronic Structure of TO₂ Compound

$H U Yan-Fei^{l^2}$, YUAN Yu $Quan^{l}$

(1. School of Science, Sichuan University of Science & Engineering Zigong 643000, China,

2 Institute of A tom ic and M olecular Physics, Sichuan University, Chengdu 610065, China)

Abstract A natase, rutile and fluorite T O_2 were sinulated by ab in itio calculations based on the density functional theory with the pseudopotential method. We obtained the lattic constant the isothermal modulus B_0 and its pressure derivative B'_0 . The structure was optimized under first-principles method. By analyzing band structure, density of states, valence band of T O_2 was mainly contributed by 2p density of oxygen and conductor band was mainly contributed by 3d density of titanium. The band gap was obtained and the results show that the band gap of fluorite T O_2 is smaller than that of rutile and anatase T O_2 , the absorption range of fluorite T O_2 extends to the bigger region and the photocatalytic activity will be also in proved

Key words T.D.; density functional theory band structure density of state 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net