2011年8月

文章编号:1673-1549(2011)04-0399-03

基 - 可数亚紧空间

唐永帅1,高绍娟1,康素玲2

(1. 成都理工大学应用数学系, 成都 610059; 2. 合肥学院数学与物理系, 合肥 230601)

摘 要:文章引入了基 - 可数亚紧空间,获得了如下主要结果:(1) $\{F_i\}_{i\in N}$ 是空间 X 的点有限闭覆盖,每一闭集 $F_i(i\in N)$ 是相对于 X 的基 - 可数亚紧闭子空间,则 X 是基 - 可数亚紧空间。(2) 设 $f:X\to Y$ 是基 - 可数亚紧映射, $\omega(X) \ge \omega(Y)$,如果 Y 是正则的基 - 可数亚紧空间,那么 X 是基 - 可数亚紧空间。

关键词:基;点有限;基-可数亚紧空间;基-可数亚紧映射中图分类号:0189.11 文献标识码:A

引言

Proter J. E 在文献[1]中定义了基 - 仿紧空间,并研究了基 - 仿紧空间的性质。本文在基 - 仿紧空间基础上给出了基 - 可数亚紧空间的定义,并对基 - 可数亚紧空间的有关性质进行了初步的探讨。文中用 N 表示自然数集, |A| 表示集合 A 的势, $\omega(X)$ 表示空间 X 基底的最小势,简称为拓扑势。 $(\cup)_A$ 和 N(A) 分别表示集合 $\{U \in \cup : U \cap A \neq \phi\}$ 和集合 A 的开邻域;特别 $(\cup)_x$ 和 N(x) 分别表示集合 $(\cup)_{|x|}$ 和 $N(\{x\})$ 的开邻域。 $St(A, \cup) = \cup (\cup)_A, St(x, \cup) = \cup (\cup)_{|x|}$ 文中所有映射均为连续满射,用 f 表示。其它未作特殊声明的拓扑学术语见文献[2,3]。

定义 1 空间 X 的集族 \cup 称为局部有限的,如果对任意 $x \in X$, 存在 x 的邻域 O_x 至多与 \cup 中有限个元相 交。或者, $\forall x \in X$, $\exists O_x \in N(x)$, 有 $\mid (\cup)_0 \mid < \omega$ 。

定义2 空间 X 的集族 \cup 称为点有限的, $\forall x \in X$,有 有 $\mid (\cup)_x \mid = \mid (\cup)_{\mid x \mid} \mid < \omega$ 。

定义 3 空间 X 的基底的最小势,称为拓扑势,记为 $\omega(X)$ 。

定义4 集族 \lor 和 \cup 都是集合 X 的覆盖,如果对

 $\forall V \in V$, $\exists U \in U$, 使得 $V \subset U$ 成立, 称集族 \lor 是 \cup 的部分加细; 如果还满足 $\cup V = \cup U$, 则称 \lor 是 \cup 的加细。

定义 5 空间 X 称为基 – 仿紧空间,如果存在 X 的一个基 B,有 $|B| = \omega(X)$,对于 X 的每一开覆盖 \cup ,都存在 $B' \subset B$,使得 B' 是 \cup 的局部有限的开加细。

定义 6 空间 X 称为基 – 亚紧空间,如果存在 X 的 一个基 B,有 $|B| = \omega(X)$,使得对于 X 的每一开覆盖 \cup ,都存在 $B' \subset B$,使得 $B' \in D$ 的点有限的开加细。

定义7 空间 X 称为基 – 可数亚紧空间,如果存在 X 的一个基 B,有 $|B| = \omega(X)$,使得对于 X 的每一可数 开覆盖 \cup ,都存在 $B' \subset$,使得 B' 是 \cup 的点有限的开加 细。

定义8 空间 X 的子集 M 称为相对于 X 是基 – 可数亚紧的,如果存在 X 的一个基 B,有 $|B| = \omega(X)$,使得对于 M 在 X 中的每一可数开覆盖 \cup (即 X 中的开集族覆盖 M),都存在 $B' \subset B$,使得 B' 是 \cup 的点有限的部分开加细并且 $M \subset \cup B'$ 。

定义9 称映射 $f: X \to Y$ 为基 – 可数亚紧映射,如果存在 X 的基 B,满足 $\mid B \mid = \omega(X)$,并且对于任意的 $y \in Y$ 以以及 $f^{-1}(y)$ 在 X 中的任意可数开覆盖 \cup ,都存在 y

收稿日期:2011-04-12

基金项目:安徽省高等学校省级优秀青年人才基金资助项目(2010SQRL158)

作者简介: 唐永帅(1982-), 男, 四川眉山人, 硕士生, 主要从事拓扑学方面的研究。

的开邻域 O_y 和 \cup 的部分加细 $B_y \subset B$, 使得 $f^{-1}(O_y) \subset \cup$ B_y , 并且 B_y 在 $f^{-1}(O_y)$ 处点有限。

引理 1 基 – 可数亚紧空间 X 的闭子集 M 相对于 X 是基 – 可数亚紧的。

证明 设 X 是基 - 可数亚紧空间,M 是 X 的闭子集,B 是 X 的基,有 $|B| = \omega(X)$,令 \cup 是 M 在 X 中的任一可数开覆盖,则 \cup \cup $\{X\backslash M\}$ 是 X 的可数开覆盖,由 X 是基 - 可数亚紧空间,所以存在 $B' \subset B$,使得 B' 是开覆盖 \cup \cup $\{X\backslash M\}$ 在 X 中的点有限加细,则 $W = \{B \in B': B \cap M \neq \phi\}$ 是 \cup 的点有限的部分开加细,并且 $M \subset \cup W$ 。

1 主要结论和证明

定理 1 设 X 是基 - 可数亚紧空间, M 是 X 的闭子集,并且满足 $\omega(X) = \omega(M)$ 则 M 是基 - 可数亚紧空间。

证明 由引理1 知X 的闭子集M 相对于X 是基 – 可数亚紧的,因为 $M \subset X$, M 是 X 的闭集,并且满足 $\omega(X) = \omega(M)$,所以 M 是基 – 可数亚紧空间。

定理2 设 $\{F_i\}_{i\in N}$ 是空间X的点有限闭覆盖,每一闭集 $F_i(i\in N)$ 是相对于X的基-可数亚紧闭子空间,则X是基-可数亚紧空间。

证明 设 $X = \bigcup F_i$, 其中每个 F_i 都是相对于X的基 - 可数亚紧的闭子空间。对 $\forall i \in N$, ∃X的的 的基 B_i , 满足 F_i 都是相对于X是基 – 可数亚紧的。令 $B = \bigcup B_i$, 则 $B \in X$ 的基,并且满足 $\mid B \mid = \omega(X)$ 。B 是使得对每个 $i ∈ N, F_i$ 相对于 X 是基 - 可数亚紧的基。设 U = $\{U_i\}_{i\in\mathbb{N}}$ 是 X 的任一可数开覆盖,对 $\forall x\in X$, 取 $O_{i(x)}\subset$ U_i , 使得 $x \in O_{i(x)}$, 即 $\{x\} \subset O_{i(x)}$, i(x) = i, $U_i \in \cup_{\circ}$ 因 $\{F_i\}_{i\in\mathbb{N}}$ 是点有限,不妨设 $x\in O_{i(x)}$,有 $\mid (F_i)_x\mid = \mid$ $(F_i)_{|x|} \mid \langle \omega_{\circ} \Leftrightarrow \bigvee = \{O_{i(x)} : x \in X, i(x) = i\}_{i \in N}, \emptyset \bigvee$ 是 X 可数开覆盖且加细 \cup 。对每个 $i \in N$,由于 F_i 相对 于 X 的基 B 是基 – 可数亚紧的,则存在 $B'_i \subset B$, 使得 B'_i 在 X 中是点有限的部分开加细 \cup 并且满足 $F_i \subset \cup$ $B'_{i,o}$ 令 $B' = \bigcup B'_{i} \subset B$, 下证 $B' \neq X$ 的点有限族且加细 \cup 。事实上,对 $\forall i > n$, $(n \in N)$ 有 $O_{n(x)} \cap B'_{i} =$ $\phi(O_{n(x)} \in V)$ 。否则,存在某一个i,使得 $O_{n(x)} \cap B'_{i} \neq i$ ϕ ,又因为 $F_i \subset \cup B'_i$, 所以 $O_{n(x)} \cap F_i \neq \phi$, 这与 $\{F_i\}_{i\in\mathbb{N}}$ 是点有限的相矛盾。因此, B' 是 X 的点有限族。 又 $X = \bigcup_{i \in \mathbb{N}} F_i \subset \bigcup_{i \in \mathbb{N}} B'_i$,即 $B' = \bigcup_{i \in \mathbb{N}} B'_i$ 加细 \cup_{\circ}

定理 3 空间 X 是基 – 可数亚紧的当且仅当存在 X 的一个开基 B,有 $|B| = \omega(X)$,对于 X 的每个可数开覆 盖 $\cup = \{U_i\}_{i \in N}$,都存在 $B' \subset B$,使得 $B' = \{B_i\}_{i \in N}$ 是 \cup 的点有限的开加细,并且满足 $B_i \subset U_i$ 。

证明 (⇒) 假设 $\cup = \{U_i\}_{i \in N}$ 是基 - 可数亚紧空间 X 的可数开覆盖,则存在一开基 B,有 $|B| = \omega(X)$,使得 $B' \subset B$ 是 \cup 的点有限的开加细。令 $B' = \{B\}$,对每一个 $B \in B'$,满足 $B \subset U_i$ 。构造 $B_i = \cup \{B:B \in B*\}$,则 $\{B_i\}_{i \in N}$ 是点有限的。否则,设 $\forall x \in X$,司 O_x 与 $\{B_i\}_{i \in N}$ 中的可数无限个 B_1 , B_2 , …相交。由 $B_i = \cup \{B:B \in B*\}$,则存在无限多个 $B \in B_i$ 与 O_x 中的 x 相交,这与 $B' = \{B\}$ 是点有限的集族相矛盾。所以 $\{B_i\}_{i \in N}$ 是点有限的。显然 $\{B_i\}_{i \in N}$ 是点有限的。显然 $\{B_i\}_{i \in N}$ 是点有限的的数于加细,所以 X 是基 - 可数亚紧空间。

定理 4 设 $f: X \to Y$ 是基 – 可数亚紧映射, $\omega(X) \ge \omega(Y)$, 如果 Y 是正则的基 – 可数亚紧空间, 那么 X 是基 – 可数亚紧空间。

证明 设 B_Y 是Y的满足基-可数亚紧的基, B_X 是X的对于f满足基 – 可数亚紧的基,令 $B = B_v \cap f^{-1}(B_v)$, 则 B 为 X 的基。由 $\omega(X) \ge \omega(Y)$ 得到 $|B| = |B_x| =$ $\omega(X)$ 。下面证明 B 是 X 的满足基 - 可数亚紧的基。设 \cup 是 X 的可数开覆盖。因为 B_X 是 X 的对于 f 满足基 − 可数亚紧的基,所以对任意的 $y \in Y$ 以。存在y的开邻域 O_{x} 和 \cup 的部分加细 $B_{x} \subset B_{x}$, 满足 $f^{-1}(O_{x}) \subset \cup B_{x}$, 并 且 B_{ν} 在 X 中的 $f^{-1}(O_{\nu})$ 处点有限。因为 Y 是正则空间, 那么存在 y 的开邻域 V_y , 满足 $y \in V_y \subset \overline{V}_y \subset O_y$, 从而有 $f^{-1}(\gamma) \subset f^{-1}(V_{\gamma}) \subset f^{-1}(\overline{V}_{\gamma}) \subset f^{-1}(O_{\gamma}) \subset \cup B_{\gamma \circ} : \overline{U}$ ∨ * = { $V_y: y ∈ Y$ },则 ∨ * 覆盖 Y_o 由于 Y 是基 – 可数 亚紧空间,不妨设 ∀* 是可数的开覆盖,则存在一个 $B'_{Y} \subset B_{Y}$ 是 \vee * 点有限的开加细,令 $B'_{Y} = \{B'_{s}: s \in$ N 。对任意 $s \in N$,选取一个 $y_s \in Y$,使得 $B'_s \subset V_{rs}$ 。构 造集族 $B' = \bigcup \{B_{vs} \cap f^{-1}(B'_{s}) : B_{vs} \in B_{vs}, B'_{s} \in B'_{y},$ s ∈ N ,则 B' ⊂ B 并且 B' 开加细 \cup 。下面证明 B' 是 点有限的。事实上, $f^{-1}(B'_{Y})$ 在 X 中是点有限的。若 不然,假设存在 $x_0 \in X$ 包含在 $f^{-1}(B'_y)$ 的无限多个元 中,不妨设这无限多个元为可数无限个,即 $x_0 \in$ $f^{-1}(B'_{i}), B'_{i} \in B'_{Y}, i \in N \text{ } \emptyset \text{ } f \text{ } y = f(x_{0}) = f(x_{0})$

 $f(f^{-1}(B'_i)) = B'_i, i \in N$,这与 B'_Y 在 Y 中是点有限的相矛盾。对 $x \in X$,存在有限集 $N_x \subset N$,使得 $x \in f^{-1}(B'_s), B'_s \in B'_Y, s \in N_x$,对任意 $s \in N_x$,由 $B'_s \subset V_{ys} \subset \bar{V}_{ys} \subset O_{ys}$,可得到 $x \in f^{-1}(B'_s) \subset f^{-1}(O_{ys}) \subset \cup B_{ys}$,因为 B_{ys} 在 X 中集合 $f^{-1}(O_{ys})$ 处是点有限的,所以 x 含于 B_{ys} 的有限多个元中,即 B' 是点有限的。

参考文献:

- [1] Porter J E. Base-paracompact spaces[J]. Topology and Its Applications, 2003, 128:145-156.
- [2] Engelking R. General Topology[M]. Berlin: Heldermann,

1989.

- [3] 高国士.拓扑空间论[M].北京:科学出版社,2000.
- [4] 蒋继光.一般拓扑学专题选讲[M].成都:四川教育出版社,1995.
- [5] Chen Hai-yan, Zhang Xia-wei, Koug Qing-zhao, et al. Other covering properties on maps[J]. Journal of Guangxi University, 2006, 31(3):190-193, 207.
- [6] Grabner E, Grabner G. Nearly Metacompact Spaces [J]. Topology and It's Applilation, 1999, 98:191-201.
- [7] Matveev M. Absolutely countably compact spaces[J]. Topology and It's Applilation,1994,58:81-92.

Base-Countably Metacompact Spaces

TANG Yong-shuai¹, GAO Shao-juan¹, KANG Su-ling²

- (1. Department of Applied Mathematics, Chengdu University of Technology, Chengdu 610059, China;
 - 2. Department of Mathematics and Physics, Hefei University, Hefei 230601, China)

Abstract: The notion of base-countably metacompact space is introduced and the following results are mainly proved:

(i) If $\{F_i\}_{i\in N}$ is a point finite closed cover of X, and each F_i ($i\in N$) is a closed base-countably metacompact subspace relative to X, then X is a base-countably metacompact space. (ii) Let Y be a base-countably space and $f: X \to Y$ be a base-countably metacompact mapping and $\omega(X) \geq \omega(Y)$, if Y is regular then X is base-countably metacompact.

Key words: base; point finite; base-countably metacompact spaces; base-countably metacompact mapping