文章编号: 1673-1549(2011) 02-0238-06

陕南镇巴东部地区基性岩墙群的构造意义

李夫杰1,杨 骏2

(1. 中铁一局集团有限公司, 西安 710054, 2长安大学, 西安 710054)

摘 要:应用现代岩石地球化学分析方法,对镇巴东部地区基性岩墙群岩石地球化学特征进行系统分析,分析表明,Ta/Hf值在 0.27~0.90之间,Th/Ta值在 0.68~1.59之间,这与地幔柱成因的玄武 岩系特征(Ta/H 6 0.3, Th/Ta<1.6)相符。根据分析提出早古生代期间扬子板块北缘南秦岭区发生 一次重要的地幔热柱岩浆活动,也正是因为这次深部地幔热柱岩浆活动的存在才引发了该区大范围 的拉张裂解。此次地幔热柱活动应该是早古生代期间整 个南秦岭地区构造演化的主要深部驱动力来 源,可能对晚古生代时期勉略洋盆的打开产生着重要的影响,同时对秦岭造山带古生代构造演化过程 的研究也具有重要意义。

关键词:基性岩墙群;地侵柱;裂谷作用;北大巴山 中图分类号: P534.46

引言

岩墙群作为一种特殊的构造岩浆类型, 在早期大陆 地壳演化中具有重要意义。岩墙群可以侵位于不同的 地壳层次(常为 10km~ 20km 深处), 是大陆板块刚性化 及其古应力状态最直接的地质标志, 也是古板块恢复再 造的重要标志。基性岩墙群的广泛发育标志着大陆裂 解作用的存在, 它是在大陆伸展背景下主要来自地下软 流圈或岩石圈地幔的岩浆侵入体, 对古陆块的聚合与伸 展乃至裂解的重建具有至关重要的意义^[1-3]。在南秦岭 北大巴山构造带中的镇巴东部地区早古生代地层中出 露大量 NW – SE向展布的基性岩墙群, 这对探讨南秦岭 早古生代期间的构造演化有重要理论和现实意义。本 文对这些基性岩墙群的岩石地球化学特征进行了详细 研究, 并对其大地构造意义加以探讨。

1 陕西镇巴东部地区地质概况

研究区地处南秦岭 – 北大巴山逆冲推覆构造带西 段,巴山弧形断裂北缘东侧部位。北大巴山逆冲推覆构 造带中包含两个次级构造单元和两大主要断裂,分别是 高滩——兵房街逆冲推覆构造带和紫阳 – 平利逆冲推 覆构造带; 熨斗 – 观音断裂 (大巴山弧形断裂的北端部 文献标识码: A

分)和红椿坝断裂。基性岩墙群主要产出于镇巴东部巴 庙 - 熨斗一带, 总体呈 NW - SE 向展布, 一般长 3km~ 6km,最长可达 10km 左右, 出露宽度一般在 50m~ 200m 之间,最宽可达 800m。岩墙大多出露宽度稳定,两端延 伸有一定距离后逐渐尖灭 (如图 1)。基性岩墙大多与 围岩呈"顺层"侵入接触关系,岩石类型主要以中细粒辉 长辉绿岩为主,局部有少量的细粒辉绿岩脉。辉长辉绿 岩宏观野外露头上呈灰绿色-绿黑色,中-细粒结构, 块状构造。镜下观察,岩石具辉长辉绿结构,斜长石多 为自形板柱状, 少量为短柱状或不规则状, 粒径介于 0.5mm~2mm, 偶见钠黝帘石化, 含量约 40%~65%; 单 斜辉石多为半自形柱状、短柱状及不规则状, 粒径 2mm 左右,其次闪石化、绿泥石化等,含量为 30% ~ 35%;另 有少量黝帘石、绿帘石、钠长石、绿泥石、次闪石等次生 矿物。在镇巴县碾子镇西的部分基性岩脉中含有较多 的侵染状黄铁矿、磁黄铁矿等金属硫化物,局部含量可 达 1%。辉绿岩宏观露头上观察与辉长辉绿岩仅在粒度 上差异明显,为细粒结构,镜下特征为典型的辉绿结构, 矿物组成及其它特征均与辉长辉绿岩基本相似。

2 基性岩墙群的地球化学特征

研究区不同区段基性岩墙群的 16件具有代表性样

收稿日期: 2011-01-07

基金项目: 国家自然科学基金项目 (40572121, 40234041); 教育部科学技术研究重点项目 (104175)

⁽作者简介2奇内本有1982), 禺、任苏徐州公开开程师、领古可杀要从事熟悉环境与热铁施工序两的研究eserved. http://www.cnki.net

品的碎样在河北省廊坊区域地质矿产调查研究所实验 室完成,地球化学成分测试在中国科学院地质与地球物 理研究所岩石圈演化国家重点实验室完成,主量元素使 用 X-射线荧光光谱仪(XRF-1500)法测试,精度优于 2%~3%。微量元素及稀土元素使用 ICP-MS(Element II)测试,分析精度为:当元素含量大于 10×10⁶时,其精 度优于 5%,当含量小于 10×10⁶时,其精度优于 10%。 岩石样品的主量元素、微量元素和稀土元素的分析结果 列于(见表 1)中。表中标准化值采用 Sun S S (1989)^[4]的 标准值。其中: δ Eu = (Eu /0.058) /((Sm /0.153 + Gd/ 0.2055) ×0.5); δ Ce= (Ce /0.612) /((La /0.237 + Pr/0.095) ×0.5); (La /Yb)_N = (La /0.237) /(Yb /0.17); (La /Sm)_N = (La /0.237) /(Sm /0.153); (Gd /Yb)_N = (Gd /0.2055) /(Yb / 0.17); (Ce /Y b)_N = (Ce /0.612) /(Yb /0.17),

图 1 镇巴东部地区基性岩墙群分布

1第四系 2三叠系 3二叠系 4泥盆系 - 石炭系 5寒武 系 6早志留世梅子垭组 7早志留世五峡河组 8早志留世陡 山沟组 9晚奥陶世-早志留世斑鸠关组 10早中奥陶世权 河口组 11早奥陶世高桥组 12中寒武世-中奥陶世洞河组 13晚寒武世黑水河组 14中寒武世八卦庙组 15中寒武世 毛坝关组 16早寒武世箭竹坝组 17早寒武世鲁家坪组 18 南华系 19青白口纪耀岭河组 20基性岩脉 21 正长斑岩脉 22地质界线 23熨斗-观音断裂(大巴山弧形断裂) 24红 椿坝断裂 25一般断裂

2.1 主量元素地球化学特征

研究区基性岩类岩石 SD₂含量变化在 39.58% ~ 48.70% 范围内,绝大部分在 40% ~ 43% 之间; 各岩石样 品钛含量较高, TO₂ 含量在 2.62% ~ 5.93%, 平均为 © 1994-2011 China Academic Journal Electronic Pul

4.55%, 与板内玄武岩相当。Alo, 含量也较高, 在 12.11%~17.32%。F@含量在 9.28%~13.96%,含量 较高,且每个岩石样品的 FeO > Fe₂O₂ Fe₃O₃ 含量在 2.09%~5.20%。MgO含量在4.03%~11.44%。以上 数据可说明本区基性岩类为镁铁质玄武岩类。CaO含 量在 6.48% ~ 11.61%, 变化范围较大, 相对较高。 NaO 含量都远高于 K₂O, Na₂O /K₂O 在 1.24~ 6.92。其中 K20含量在 0.39% ~ 1.17%。 Na0含量在 1.35% ~ 4.80%。其成分特点属于 K₂O 过渡型玄武岩类型, 岩石 类型主要为辉绿岩。K,0+NaO含量在 2.32% ~ 5.84%, 平均为 3.38%, 属碱质岩类; A /CNK 值在 0.55 ~ 0.78 本区基性岩墙大部分岩石样品的 Mg[#]比较小 (< 63),指示研究区基性岩墙群是原始岩浆经过高度演化 后的产物。在 TAS图解投图结果显示各类岩石主要落 入碱玄岩和苦橄岩区,只有一个样品落入粗面安山岩 区,总体显示为碱性系列岩石(见图 2)。

图 2 基性岩 TAS(SD2-K2O+Na2O)图解

2.2 稀土元素地球化学特征

该套基性岩墙群岩石的稀土总含量 Σ REE 为 65.65 $\times 10^{-6} \sim 281.60 \times 10^{-6}$, LREE **在** 56.98 $\times 10^{-6} \sim 248.06$ ×10⁻⁶, HREE 为 8.67×10⁻⁶ ~ 33.54×10⁻⁶。可以看 出,轻重稀土分馏强烈, LREE /HREE 较大,在 5.79~ 7.40之间变化,平均为 6.63。稀土元素球粒陨石标准化 配分曲线为轻稀土元素富集重稀土元素亏损的典型碱 性岩右倾式分配模式 (图 3)。 (La/Yb)、和 (Ce/Yb)、 比值高,分别在 7.48~ 11.56和 5.79~ 8.96之间。可能 的原因是地幔物质在高压下部分熔融时, La Ce优先进 入岩浆,而作为残留相的石榴子石选择性的保留了重稀 土元素,如 Yb(因为重稀土元素在石榴子石中是相容 的,即分配系数很高)。所以本研究区的基性岩墙群为 典型的轻重稀土分馏强烈、轻稀土富集重稀土亏损的右 倾谱型的碱性岩类; δEu 值在 1.21~ 1.58 说明具有弱 的 Eu正异常,表明本区基性岩墙群在岩浆演化过程中 基本没有发生以斜长石做为结晶相的分离作用。 δCe值 在 0.86~ 0.90 具有弱的 Ce负异常^[5]。各岩石样品中 Ce的负异常表明岩浆演化过程中可能有大陆地壳物质 的混染。

© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 1 镇巴东部地区基性岩墙群岩石化学成分(%)及微量元素(10-6)分析结果

品号	LHK 01	L M 01	GY ZO1	GYZ02	GYZ03	BM Z01	BMZ02	DZC 01	HHC01	HHC02	HHC03	HHC04	N ZB 01	H 1232- 1	H 1234– 1	H 1489-1
岩石 名称	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉绿岩	辉绿岩	粒辉 绿岩	辉绿岩	辉绿岩	辉长辉 绿岩
SO_2	42.62	43. 79	40.87	40.64	42.44	42. 31	43.68	41. 19	42. 41	41.51	39.58	42.9	48.7	42 65	42.06	43.49
T O_2	4 96	4.3	3 85	4 03	5.23	5.32	5.28	5.28	4.81	4.8	5.93	5.1	3.05	3. 91	2.62	4 27
A 103	14.81	12. 74	15. 57	15. 94	13. 68	12. 11	13. 19	14.82	15. 52	13.13	17.32	12.9	14.81	15.28	13. 16	12.89
$\mathrm{Fe_2O_3}$	4 48	3 89	5.15	5.03	4.88	4.56	3.95	4.49	2.09	4. 19	5.2	3. 79	3.64	4.29	3.99	3.4
FeO	10.85	11. 69	10. 3	11. 24	11. 26	12.95	11.88	12.69	12.84	13.96	11.58	13.46	9. 28	10 66	10. 54	12.08
CaO	7.75	9.45	11. 61	10. 94	10. 28	8.82	8.31	7.94	9.24	7.71	10 28	7.15	6.48	9.88	9.31	7.99
MgO	6 28	5 55	673	6 4 6	6.05	6.31	6.03	6.06	5.58	8.12	4. 16	7.22	4.03	6.48	11. 44	7.48
K ₂ O	0.94	0.71	1.17	0.81	0.64	0.95	0.62	1.05	0.86	0.85	0. 62	0.72	1.04	0.39	0.97	0.75
N a ₂ O	3 02	3 18	1.45	1.7	2.43	2.82	2.98	2.74	2.76	1.83	1. 77	2.32	4.8	2 7	1.35	3.15
Ni	88.31	4.6	96.54	104.59	22. 07	4.99	43.46	63.08	41.24	131.65	9.88	95.75	2.14	76 39	169.37	91.03
Zn	132.38	133.66	100. 22	112.7	107.3	153 03	120 48	143 21	130.55	164 29	191.61	151.35	155. 85	117.07	106 04	121.89
Ga	22.83	20. 12	18.46	19. 24	17.36	18. 51	18. 17	20. 11	21.98	21.79	25.43	21.36	22.35	20.04	16. 01	18.46
Rb	18.47	14. 98	29.16	18. 98	11.1	17.3	15. 54	19.89	16. 18	23. 12	20 94	16 88	18.63	8.99	30. 59	17.28
Sr	955.01	745. 39	15.27	1030	10 99	840.1	10.50.7	1049. 7	24.07	905.93	12 92	007.91	434. 39	934 91	497.93	49.5 7
Y Z	26. 75	38.41	15. 3/	10. 54	19. 88	26.84	29.28	21.69	24.97	24.5	12 83	28. 2	43. 2	20 51	10.8	24.92
Zr Nh	28 35	31 /2	16.08	1 22. 85	20.02	149. 51 25. 53	5 8	136 02	140.55	24 72	97.82	1/3.07	279.01	14 /. 10	20.87	100.00
C e	0.28	0.58	1.62	1 79	20. 92	23. 33	1.65	0.89	0.62	0.66	2 03	0.36	11 48	0.52	0.99	0.41
Ba	0.2.0	642.4	1.02	1.79	32/1 85	2.50	753 28	824 74	642.41	750.02	166 57	135.2 2	583 58	10.24 6	307 07	640.06
Ба	28 21	30 08	13 82	14 68	17 02	24 33	79 54 29 54	23 36	25.4	25.02	11 61	28 61	49.46	10 24. 0	17 38	26 12
La Ce	20. 2 I 57. 96	39.90 84.09	27 9	29 63	35 22	24. <i>33</i> 51 <i>4</i> 7	29. J 4 62. 08	23. 30 47. 83	51 97	52.1	22 33	28 01 58 54	99 94	38 47	35 04	20. 12 54 07
Pr	8 5 8	12 76	4 13	4 39	5 37	8 17	9.63	7 28	7 71	7 72	3 26	8 93	14 59	5 67	4 94	8.01
Nd	38 65	12. 70 58 97	18 35	10 73	24 4	37 00	9.03 44 1	33 15	35 48	36 31	15 01	40 76	64.85	25.07	21 75	37 16
Sm	8 28	12 76	4 3	4148	5143	8165	9138	7122	71 53	71.58	3134	8146	14102	51.87	418	7174
Eu	3132	4144	2128	2109	1198	3134	3155	219	21.85	31.12	1143	3173	512	2142	1187	3129
Gd	7197	121 32	4148	4169	5135	8125	9111	6161	7134	7128	31 12	81 35	12168	51 51	4153	71.62
Tb	11 1 1	1171	0163	0171	01.8	1124	1127	0196	0199	11.02	0146	11.13	11.84	01.81	0165	11.06
Dv	5166	8139	3122	3154	412	6102	6141	4169	51 12	419	21 39	51 81	9124	41 29	3136	513
Ho	1108	1151	016	0166	0182	1104	1114	0183	0192	019	0148	1102	1165	0177	0162	0197
Er	2157	3161	1149	1166	1191	2163	2178	2112	2125	2127	11 16	2154	4127	21 02	1164	2141
Tm	0135	0151	0122	0125	0127	0135	0138	0127	013	01 29	01 15	0133	01 54	0127	0124	0132
Yb	1192	2177	1125	1125	1149	1191	2118	1167	1183	1163	0178	1185	2188	1159	1132	119
Lu	0131	0141	0118	0119	0125	0127	0129	0123	01 23	01 23	01 13	0126	0144	01 25	012	0127
Ηf	4133	4187	2199	3114	3144	411	4155	3152	31 63	31 53	21 28	3199	61 37	3175	3132	4127
Та	1173	1133	11 0 1	1108	112	1159	0115	1143	1136	11 37	01 87	1155	21 51	1125	1117	0138
Pb	1139	118	11 4 1	1135	1162	2169	1165	4134	1131	0193	11 14	0175	2109	11 82	1105	1165
Τh	119	2111	1116	1123	1149	1149	2102	1151	1146	1134	0164	1165	2175	11 52	1147	1188
Тi	297 561 8	2578319	2 30 801 8	2415919	3 13 531 9	3 189 31 4	3 165 31 6	3 163 51 6	2886116	2879014	35 55 01 4	30 55 71 1	1827614	23 43 31 3	1572617	255 811 9
K	390110	294615	485515	336115	265610	394215	257310	43 571 5	356311	35 271 5	257310	298810	431610	16 181 5	402515	311215
Р	199218	436818	79317	84919	102410	224417	25 101 5	18 851 5	198417	208910	65619	231713	305 11 4	92213	81212	186319
La/Nb	1	1127	0181	0177	0181	0195	5109	0199	1102	1101	0167	1101	1104	018	0183	2148
Th /N b	0107	0107	0107	0106	0107	0106	0135	0106	0106	0105	0104	0106	0106	0106	0107	0118
Hf/Th	2128	2131	2157	2155	2131	2175	2125	2133	2149	2164	31 57	21 42	2131	2147	2126	2127
Ta <i>l</i> Hf	014	0127	0134	0134	0135	0139	0103	0141	01 37	01 39	01 38	01 39	01 39	01 33	0135	0109
Ta/Yb	019	0148	0181	0187	0181	0183	0107	0186	0174	01 84	1111	0184	01 87	01 79	0188	012
Ce/Pb	41170	46172	191 79	21195	21174	191 13	37162	11102	391 67	56102	19159	78105	47182	21114	331 37	32177
DEu	1123	1107	1158	1138	1111	1119	1116	1126	1116	1127	11 33	1134	11 17	1128	1121	1129
DСе	0190	0191	0190	0190	0190	0189	0190	0189	0190	0191	01 88	01 89	0190	0190	0191	0191
(La/Yb) _N	10154	101 35	7193	8142	8119	9114	9172	101 03	9196	11101	101 68	1 11 09	12132	81 59	9144	9186
(La/Sm) _N	2120	2102	2107	2112	2102	1182	2103	2109	21 18	21 13	21 24	21 18	21 28	21 10	2134	2118
(Gd/Yb) _N	3143	3168	2196	3110	2197	3157	3146	3127	31 32	31 69	3131	3173	3164	21 87	2184	3132
(Ce/Yb) _N	8139	8143	6120	6158	6157	7149	7191	7196	71 89	81 88	7195	8179	9164	6172	7137	7190
IREE	145100	213100	701 78	75100	89142	13 31 95	158128	12 11 74	130194	13 11 8 5	56198	149103	248106	961 57	85178	1 361 39
HREE	20197	31123	121 07	121 95	151 09	21171	231 56	171 38	181 98	18152	8167	2 11 29	33154	15151	121 56	19185
E REE	165197	244123	821 85	87195	104151	155166	18 11 84	1391 12	149192	150137	65165	170132	281160	112108	98134	1 561 24
LREE/ HREE	6191	6182	5186	5179	5193	6117	6172	7100	6190	71 12	61 57	7100	7140	61 23	6183	6187

图 3 基性岩墙群稀土元素分布模式图 (球粒陨石标准化数据据 Boynton W. V., 1984)

213 微量元素地球化学特征

在基性岩墙群岩石样品原始地幔标准化微量元素 蛛网图中 (见图 4),显示各岩石样品相对富集大离子亲 石元素 (LILE), 并且表现为以 Ba为明显峰值的右倾谱 型。高场强元素 (HFSE)分布变化幅度较小, 分异不明 显,大离子亲石元素含量变化幅度较大,但自左向右随 元素的不相容性的降低,富集度逐渐降低。K相对于 La 和 Ta亏损,且在蛛网图中并没有出现 Nb, Ta谷 (样品 BM Z02, HHC04除外), 证明为非岛弧背景, 与消减作用 无关。总体来看,在岩石微量元素原始地幔标准化蛛网 图上,曲线总体呈现右倾谱型,具有典型的板内玄武岩 分布型式。且部分微量元素如 K、Rr Ba等可能在岩浆 演化,特别是后期改造作用过程中存在迁入与带出现 象。研究区大部分基性岩岩石样品具有高 Ti(TO₂ > 4%,在 2162~ 5193 平均为 4125 Ti/Y> 500)的特征,这 与中国东部中新生代大陆裂谷环境形成的玄武岩富 T D₂(平均为 2125)相似, 这表明研究区碱基性岩类代表 了大陆裂谷发育早期阶段的产物。另外,裂谷初期玄武 岩是以 Ba的富集和 Th的亏损为典型的^[7]。同时裂谷 早期演化阶段应以碱性玄武岩为主^[8],本区基性岩类的 Ta/Hf平均为 0133,基本都大于 013。根据汪云亮等研 究,大陆裂谷拉斑玄武岩较碱性玄武岩 Ta/Hf比值低, 前者一般为 011~013 后者一般大干 013 本区岩石样 品明显具有这些特征,证明了本区岩石应形成于裂谷早 期演化阶段的构造环境^[9]。

3 基性岩墙群的成因及其构造意义

本区基性岩墙岩石样品在 La/Nb- La图解上绝大 多数落入 OB区, 少数落入 AB区 (见图 5)。且岩石样 品相对富集轻稀土, 轻重稀土分馏强烈, 总体显示了较 为一致的右倾谱型, 这种分配模式也与典型的洋岛玄武 岩 (OB)一致^[4]。对于具有与 OB相似化学组成的岩浆 最简单的解释是它们来自于岩石圈之下的软流圈, 而偏 离 OB区的岩石就不可能是完全源自于软流圈, 它们应 该受到太陆岩石圈的轻微混染。

图 5 基性岩的 La/Nb - La 图解(图中符号同图 4)

Th Ta H f是一组耐熔强亲岩浆元素,它们的亲岩浆 性是同步变化的。TaH f和 Th/H f的值在地幔部分熔融 过程中只有很小的变化,在岩浆分离结晶过程中基本不 变,岩石的 Ta/H f和 Th/H f值基本等于其源区的相应比 值。由于地球化学性质的相似性,其相互之间的比值关 系能将深部作用的地球化学过程较好地恢复出来。玄 武岩类特别是原始玄武岩浆形成的岩石的 Tall f和 Th/ Hf比值能较好地反映其源区的 Th Ta Hf之间的分异特 征。一般情况下这一特征与某种确定的大地构造环境 有密切关系和确定的因果联系,可用来判别玄武岩类形 成的大地构造环境及其源区 Th Ta H f分异特征^[9]。对 于原始岩浆, Ta/Hf和 Th/Hf比值大的差异被解释为源 区成分不同引起^[10]。Ta/Hf) Th /Hf图解中,本区基性 岩石样品基本全部落入地幔热柱玄武岩区 (见图 6)。 本区基性岩类 Nb/Zr值在 0115~ 0118之间, 平均 0116 Th/Nb值在 0104~ 0107之间, 平均 0106(样品 BMZ02, H1489-1除外),所以本区基性岩岩石从孙书勤 (2003)^[11]所研究的角度也符合地幔柱成因玄武岩系 (Nb/Zr> 0115, Th/Nb< 0111), 明显不同于岛弧和大陆 板内裂谷玄武岩的 Th /Nb> 0111。在 Th /Zr) Nb/Zr关 系图上基本全部落入地幔柱成因玄武岩区 (见图 7)。

在大陆壳拉张早期,部分熔融只发生在岩石圈部 分,随着岩石圈拉张程度的增大,软流圈对生成岩浆的 贡献逐渐增大。所以,根据本区基性岩墙群的地球化学

图 6 Ta/Hf – Th/Hf 图解(据汪云亮等,2001)

 板块发散边缘 N – MORB 区;II.板块汇聚边缘(II,.
 大洋岛弧玄武岩区;II, 陆缘弧及陆缘火山弧玄武岩区);
 II.大洋板内洋岛、海山玄武岩区及 T – MORB、E – MORB 区;IV.大陆板内(IV₁.陆内裂谷及陆源裂谷拉斑玄武岩区;
 IV₂.陆内裂谷碱性玄武岩区;IV₃.大陆拉张带(或初始裂谷)玄武岩区);V. 地幔热柱玄武岩

图 7 Th/Zr – Nb/Zr 图解(据孙书勤,2003) I. 大洋板块发散边缘 N – MORB 区; II. 板块汇聚边缘 (II₁. 大洋岛弧玄武岩区; II₂. 陆缘岛弧及陆缘火山弧玄武 岩区); III. 大洋板内(洋岛、海山玄武岩区、T – MORB、E – MORB 区); IV. 大陆板内(IV₁. 陆内裂谷及陆缘裂谷拉斑 玄武岩区; IV₂. 大陆拉张带(或初始裂谷)玄武岩区; IV₃. 陆 – 陆碰撞带玄武岩区); V. 地幔热柱玄武岩区

特征可以得知,该区源岩浆形成初期是在高压下地幔岩 石圈首先发生了低程度的部分熔融,随后岩石圈拉张程 度迅速增大,软流圈地幔柱物质很快成为源岩浆的主要 来源。

~ 447M a) 时期勉略地区一直处于拉张裂陷环境,在 O₂ - D₃ (447M a~ 335M a) 时期, 随着北侧商丹洋盆向华 北板块的俯冲碰撞闭合, 勉略地区初期小裂谷进一步拉 张打开,形成初始洋盆。对勉略带南侧晚古生代沉积岩 层发育层位的时代及其延展分布状态的研究揭示出: 勉 略古洋盆的演化过程是自西向东逐渐扩张打开的[13],并 且于晚古生代中晚期与西侧东昆南)阿尼玛卿裂谷相 互对接沟通形成东古特提斯洋北支[14]。前人对该区域 不同岩类的同位素定年研究结果表明.本区各类岩石年 龄介于 47216M a~ 41311M a, 黄月华等, (1992); 夏林圻 等,(1994)研究表明^[15216],本区各类岩石形成于晚志留 纪之前,所以本区与勉略地区在早古生代时期处在同样 的构造拉张环境中。从宏观上看,北秦岭的地幔柱岩浆 活动始于古元古代,南秦岭的地幔柱岩浆活动开始于中 元古代晚期^[17],本区地幔柱活动始于早古生代,再往南 的扬子板块内峨眉山地幔柱活动于二叠纪。这可说明 秦岭造山带 (元古代之前均属扬子板块北缘)及其扬子 地块内部受到了多期次以时间为序向南推移的地幔柱 活动的影响。从时间上看,本区各岩类的形成时间略早 干勉略洋盆的打开时间,空间上它们均处干扬子板块北 缘且本区脉岩类紧靠勉略缝合带之南,这可能暗示它们 具有类似的深部动力学背景。短时间内邻近的又近平 行区域内出现这么大范围的拉张环境,时间上又相继联 系,且在此范围内又有地幔柱活动从北到南的先后控 制,用不同的深部动力学机制来解释它们的拉张裂解比 较困难。而更合理的是,早古生代扬子板块北缘大范围 的拉张作用都是由相同的深部动力学机制控制,这次大 范围的拉张作用应该就是该区域深部地幔柱活动过程 的地表响应。在本区以东紫阳 – 岚皋一带也有相似岩 脉产出,与本区岩脉空间上相连且产状相似,形成时间 上也与本区吻合,同属地幔柱岩浆活动的产物^[18]。紫阳 - 岚皋一带岩墙群形成于早古生代晚期, 略晚于本区岩 脉的形成时间,这也恰恰与勉略古洋盆的演化过程是自 西向东逐渐扩张打开的观点相吻合[13],这也更加有力的 证明了勉略洋盆的打开与本区及以东地区的大规模基 性岩墙群同属地幔柱活动的产物。照此推论并结合目 前研究的事实可以认为,早古生代时期的地幔柱活动主 要发生在镇巴 - 紫阳 - 岚皋一线。在晚古生代时, 地幔 柱活动中心南移至勉略带,然后进一步向南移动,于二 叠纪时期在我国西南部扬子克拉通内形成大规模的峨 眉山溢流玄武岩。所以秦岭及扬子板块北缘区域可能 存在着多期次与地幔柱活动有关的以时间为先后由北 向南的裂解作用。本研究区的碱基性岩墙群就是目前 南秦岭地区有可靠证据的一次地幔热柱岩浆活动的产 物,它们代表了南秦岭区早古生代时期的一次重要的拉 张伸展事件,对秦岭造山带古生代构造演化过程的研究

根据张国伟 (2003)^[12] 等的研究,在 Z-O₂ (700M a 具有重要意义。 ◎ 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

243

参 考 文 献:

- Halls H C, Fahrig W C (eds). Mafic Dykes Swams
 [M]. Geological Society of Canada Special Publica2 tion, 1987.
- [2]周鼎武,张成立,刘良,等.武当地块基性岩墙群的 Sm 2N d定年及其相关问题讨论[J].地球学报, 1998, 19(]): 25230
- [3] 李江海,何文渊,钱祥麟,等.元古代基性岩墙群的成因机制、构造背景及其古板块再造意义[J]. 高校地质学报,1997,3(3):272281.
- [4] Sun S S, M cDonough W F. Chemical and isotopic sys2 tematics of oceanic basalts implications for mantle composition and processes [A]. In Saunders AD and NorryM J M agnatism in the O cean Basins [C]. Geo2 logical Society Special Publication, 1989, 42 3132 345
- [5] 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31
 (1):922103.
- [6] Boynton W V. Geochemistry of the rare earth ele2 ments meteorite studies [A]. In Henderson P. (ed) [C]. Rare earth element geochemistry. Elsevier, 1984, 632114
- [7] Hohn P E. The geochem ical fingerprints of different tectonom agmatic environments using hygrom agmato2 phile element abundances of tholeiitic and basaltic and esites[J]. Chem. Geol 1985, 51: 3032323
- [8] 张成立,高山,张国伟,等.南秦岭早古生代碱性 岩墙群的地球化学及其地质意义[J].中国科学: D辑, 2002, 32(10): 8192829.
- [9] 汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的 Th/Hf 一Ta/Hf图解判别 [J]. 岩石学

报, 2001, 17(3): 4132421.

- [10] McCulloch and Gam ble Depleted source for volcanic arc basalts constraints from basalts of Kem adec2 Taupo volcanic zone based on trace elements iso2 topes and subduction chemical geodynamics[A]. In Continental Magnatism [C]. Into Volcanic Conf2 Abstr New Mexico Bru Miner, Resour Bull 1989, 1312180
- [11] 孙书勤, 汪云亮, 张成江. 玄武岩类岩石大地构 造环境的 Th, Nh, Zr判别 [J]. 地质评论, 2003, 49(1): 16222
- [12] 张国伟,董云鹏,赖绍聪,等.秦岭一大别造山带 南缘勉略构造带与勉略缝合带 [J].中国科学:D
 辑,2003,33(12):112121135
- [13] Liu Shaofeng Zhang Guow ei Process of rifting and collision along plate margins of the Q inling orogen ic belt and its geodynamics[J]. Acta Geologica S ini2 ca 1999, 73(3): 2752287.
- [14] 孙延贵,张国伟,王 瑾,等.秦昆结合区两期基性 岩墙群⁴⁰Ar/³⁰Ar定年及其构造意义[J]. 地质学 报, 2004, 78(1): 66271.
- [15] 黄月华,任有祥,夏林圻,等.北大巴山早古生代 双模式火成岩套:以高滩辉绿岩和篙坪粗面岩 为例[J].岩石学报,1992,8(3):2432256.
- [16] 夏林圻,夏祖春,张 诚,等.北大巴山碱质基性) 超基性潜火山杂岩岩石地球化学[M].北京:地 质出版社,1994
- [17] 张本仁. 秦岭地幔柱源岩浆活动及其动力学意义[J]. 地学前缘, 2001, 8(3): 57266
- [18] 晏云翔. 陕西紫阳 2歲皋地区碱2基性岩墙群的岩石地球化学及 Sr Nd Pb同位素地球化学研究 [D]. 西安: 西北大学, 2005

Fectonic Meaning of Mafic Dyke Swarms in Zhenba Eastern Area in Shannan

LIFu2jie, YANGJun²

(1. China Railway First Bureau Group Gorp, Xipan 710054, China, 2. Changpan University, Xipan 710054, China)

Abstract Using the modern geochemistry analysis way, the article analyzes the geochemistry characteristics of M afic Dyke Swams, which is in Zhenba eastern area. The result shows that the numerical value of Ta/H f is between 0127 and 0190 and Th/Ta is between 0168 and 1159. This conclusion accords with the basalt characteristics, which comes into being for mantle plume. A coording to the conclusion, the article deduces that there is an in portant mantle plum e magma action at the north of Y angtze plate, the south Q in M ountain during the early Paleozoic age and arouses the pull and rift valley action in big range. The article thinks that this mantle plume e action should be the main deep driving power source for the whole south Q in M ountain conformation and evolvement in early Paleozoic age and may have very important effects on opening the M ianlue o2 cean basin in the late Paleozoic age and have in portant meaning on researching on Q in M ountain conformation and evolve2 ment

Key words mafic dyke swarms mantle plume, action of rift valley; the north big mountain

© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net